DOI QR코드

DOI QR Code

A Study on the Validation Test for Open Set Face Recognition Method with a Dummy Class

더미 클래스를 가지는 열린 집합 얼굴 인식 방법의 유효성 검증에 대한 연구

  • Ahn, Jung-Ho (Division of Software Application, Kangnam University) ;
  • Choi, KwonTaeg (Division of Software Application, Kangnam University)
  • 안정호 (강남대학교 소프트웨어응용학부 가상현실전공) ;
  • 최권택 (강남대학교 소프트웨어응용학부 가상현실전공)
  • Received : 2017.05.10
  • Accepted : 2017.06.25
  • Published : 2017.06.30

Abstract

The open set recognition method should be used for the cases that the classes of test data are not known completely in the training phase. So it is required to include two processes of classification and the validation test. This kind of research is very necessary for commercialization of face recognition modules, but few domestic researches results about it have been published. In this paper, we propose an open set face recognition method that includes two sequential validation phases. In the first phase, with dummy classes we perform classification based on sparse representation. Here, when the test data is classified into a dummy class, we conclude that the data is invalid. If the data is classified into one of the regular training classes, for second validation test we extract four features and apply them for the proposed decision function. In experiments, we proposed a simulation method for open set recognition and showed that the proposed validation test outperform SCI of the well-known validation method

열린 집합 인식 방법론은 테스트 데이터의 클래스를 학습 시에 모두 파악할 수 없는 경우에 대한 인식 방법론이다. 따라서 열린 집합 인식 방법론은 분류와 유효성 검증의 절차를 필요로 한다. 이러한 연구는 얼굴 인식 모듈의 상용화를 위해 필수적이지만 지금까지 국내에서 연구 결과들이 거의 발표되지 않았다. 우리는 두 개의 검증 단계를 가지는 열린 집합 얼굴 인식 방법론을 제안한다. 첫 번째 단계에서는 학습 클래스 외에 더미 클래스들을 설정하고 희소표현 기반 분류를 수행한다. 이 때 테스트 데이터가 더미 클래스로 분류되면 무효 데이터로 판별하고, 유효한 클래스로 분류되면 다음 유효성 검증 단계로 넘어간다. 두 번째 단계에서 제안하는 네 가지 특징을 추출하고, 확률분포에 기반을 둔 판별함수를 통해 유효성 검증을 수행한다. 우리는 실험을 통해 열린 집합 인식 방법론의 시뮬레이션 방법을 제안하였고 제안하는 방법론의 성능을 제시하고, 희소기반 분류 방식에서 널리 사용되는 SCI 지표를 이용한 유효성 테스트보다 높은 성능을 보임을 입증할 수 있었다.

Keywords

References

  1. W. J. Scheirer, A. Rocha. A. Sapkota and T. E. Boult, "Toward Open Set Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 7, pp. 1757-1772, July 2013. https://doi.org/10.1109/TPAMI.2012.256
  2. F. Li and H. Wechsler, "Open Set Face Recognition using Transduction", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 11, pp. 1686-1697, September 2005. https://doi.org/10.1109/TPAMI.2005.224
  3. P. Li, Y. Fu, U. Mohammed, J. H. Elder and S. J. D. Prince, "Probabilistic Models for Inference about Identity", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 1, pp. 144-157, January 2012. https://doi.org/10.1109/TPAMI.2011.104
  4. W. J. Scheirer, L. P. Jain and T. E. Boult, "Probability Models for Open Set Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, No. 11, pp. 2317-2324, November 2014. https://doi.org/10.1109/TPAMI.2014.2321392
  5. A. Bendale and T. E. Boult, "Toward Open Set Deep Networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
  6. G. B. Huang, M. Ramesh, T. Berg and E. Learned-Miller, "Labeled faces in the wild: A database for studying face recognition in unconstrained environments", Uinversity of Massachusetts, Amherst, Technical Report 08-49, October, 2007.
  7. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma, "Robust face recognition via sparse representation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 2, pp. 210-227, February 2009. https://doi.org/10.1109/TPAMI.2008.79
  8. D. Needell and R. Vershynin, "Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit", Foundations of Computational Mathematics, Vol. 9, No. 3, pp. 317-334, June 2009. https://doi.org/10.1007/s10208-008-9031-3
  9. K. Choi and J.-H. Ahn, "Face Recognition via Sparse Representation using the ROMP Method", Journal of Digital Contents Society, Vol. 18, No. 2, pp. 151-159, April 2017.
  10. M. Guillaumin, V. Verbeek and C. Schmid, "Is that you? Metric Learning Approaches for Face Identification", in Proceeding of 2009 IEEE 12th International Conference on Computer Vision, pp. 498-505, September 2009.
  11. C. Cortes and V. Vapnik, "Support-Vector Networks", Machine Learning, Vol. 20, No. 3, pp. 273-297, September 1995. https://doi.org/10.1007/BF00994018
  12. J. Shao, Mathematical Statistics, 2nd ed. Springer, 1994.
  13. E. Parzen, "On Estimation of a Probability Density Function and Mode", Annals of Mathematical Statistics, Vol. 33, No. 3, pp. 1065-1076, 1962. https://doi.org/10.1214/aoms/1177704472
  14. Wikipedia. Kernel density estimation. Available: https://en.wikipedia.org/wiki/Kernel_density_estimation
  15. T. Ahonen, A. Hadid and M. Pietikainen, "Face description with local binary patterns: Application to face recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 12, pp. 2037-2041, December 2006. https://doi.org/10.1109/TPAMI.2006.244
  16. P. N. Belhumeur, J.P. Hespanha and D. J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 711-720, July 1997. https://doi.org/10.1109/34.598228