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Abstract 
In this study, we proposed a new approach to segment ground and nonground points gained from a 3D laser 
range sensor. The primary aim of this research was to provide a fast and effective method for ground 
segmentation. In each frame, we divide the point cloud into small groups. All threshold points and start-
ground points in each group are then analyzed. To determine threshold points we depend on three features: 
gradient, lost threshold points, and abnormalities in the distance between the sensor and a particular 
threshold point. After a threshold point is determined, a start-ground point is then identified by considering 
the height difference between two consecutive points. All points from a start-ground point to the next 
threshold point are ground points. Other points are nonground. This process is then repeated until all points 
are labelled. 
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1. Introduction 

Segmentation is important for both 2D and 3D data processing. In 2D image processing, segmentation 
is a pre-processing step for many tasks in [1-3]. For RGB-D sensors [4,5], the authors used a 2D image 
combined with deep data to segment each object. In our study, we focus on 3D point cloud data. Point 
cloud segmentation is important for any autonomous moving system, and ground segmentation is also 
part of said system. In this part, we have segmented a point cloud into two groups. The first group 
consists of ground points of terrain which a vehicle can traverse. The second group consists of non-
ground points which vehicle cannot traverse such as trees, walls, cars, etc. If the terrain has an 
enormous gradient, the autonomous vehicle also cannot move across it. In this case, all points in this 
category are placed into the nonground group. For real-time autonomous moving systems, a fast 
ground segmentation method is required. 

Previous studies about ground segmentation have been conducted; however the results did not match 
our expectations. Hernandez and Marcotegui [6] proposed a method which works well in a flat urban 
environment, however this method is not effective for sloping terrain. Moosmann et al. [7] proposed 
another method for solving the problem in non-flat urban environment, which is very simple and easy 
to implement. In this method, the authors built a graph from the point cloud and calculated the normal 
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vector of each surface in the graph. Next, they defined local convexity features between pairs of 
neighborhood surfaces. This method is not effective when applied to bumpy terrains in mountain areas, 
as the point cloud may contain holes due to lost points, causing difficulties when building graphs and 
defining local convexity features. 

In [8] and [9], the authors propose a different method for segmenting point cloud 3D data. In this 
method, the authors divided a point cloud dataset into smaller parts such as voxels or blocks. After 
processing, these smaller parts are combined to produce results, however this method is time-consuming. 
In [10], the authors proposed a method which is closest to our method, however the implementations 
are different. For each point, we must wait until obtaining enough 4 neighbor points for calculating. 
This method is also dependent on previous and next vertical line. Moreover, this method needs more 
time to build the terrain mesh. 

In our method, we divide each frame of point cloud into small groups. Each group is a vertical line 
from sensor’s position to one point in the largest circle. In the vertical line, we find all start-ground and 
threshold points. In practice, we often obtained one start-ground point and one threshold point. After 
that, we will assign label “ground” or “non-ground” for each point. The process will be repeated until 
we label all points. 

 
 

2. Fast Ground Segmentation Algorithm 

The fast ground segmentation algorithm is illustrated in Fig. 1. “Local point cloud,” and is taken from 
the Velodyne Lidar sensor, frame by frame. Each frame contains numerous 3D points. The “Local point 
cloud” is processed directly in each frame but it is similar to a database. All points in each frame are in 
local coordinate and the original coordinate is sensor’s position. We will segment each frame, and 
therefore do not need to convert to global coordinates. A frame data is divided into small groups. Each 
group is a vertical line. All points in each vertical line were processed and labelled. The details of the 
vertical line processing are described below. 

 

 

Fig. 1. Overview of the fast ground segmentation algorithm. 
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Fig. 2. A vertical line in side view. 

 

We processed each vertical line illustrated in Fig. 2 as a green line. In theory, if we use a n-lines 
sensor, we can obtain n points in each line. We added one more point, which is a ground point the at 
sensor’s location, making number of points n+1. In each vertical line, we first identified all start-ground 
points and threshold points. The first start-ground point is always at the location of the sensor. From 
this start-ground point, we then identified first threshold point by considering each pair of consecutive 
points. Next, whether or not a threshold point could be identified, we assigned each point a label. We 
also assigned a ground label from each start-ground point to the next threshold point. After each 
threshold point, we assigned non-ground labels to the distance between the threshold point and the 
next start-ground point. 

We then repeated this process until all points were identified and labelled. In Fig. 2, the first start-
ground point is labelled “0.” We assumed that point 4 is the unique threshold point. Therefore, 1, 2, 3, 
and 4 are ground points and all points after point 4 are non-ground points. 

 

2.1 Finding a Threshold Point 
 

We considered gradient value of two consecutive points where possible. If a threshold point could not 
be identified, all points in the vertical line were considered ground points. As mentioned earlier, 
threshold points are determined by considering three features: gradient, lost threshold points, and 
abnormalities in the distance between the sensor and a particular threshold point. 

In the first case, we calculated the gradient value α between two consecutive points using the formula 
below (1). 

 
� � arcsin	��/��                                                                  (1) 

 
Here, ‘h’ and ‘d’ are the height difference and distance between previous and current points, 

respectively. We defined a maximum sloping angle of terrain which the vehicle can traverse as ����. If 
the gradient value is larger than ����, the previous point is considered a threshold point in this line. 
For example, in Fig. 3, C is considered a threshold point because the gradient from C to D exceeds the 
maximum value. 
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Fig. 3. Gradient which exceeds the limit value. 

 
The second case is based on real-time observation, as a laser ray must collide with a physical object 

for responsive points to be identified. Using this method, we can identify all lost points in each line. If a 
lost point occurred between two continuous points, the previous point is considered a threshold point, 
even if α is smaller than ����. We also propose a minimum height ���� to decrease noise. When h is 
larger than or equal to ����	and there is at least one lost point between previous and current points, the 
previous point is a threshold point. Fig. 4 shows an example of the second case, where ‘B’ is a threshold 
point because there are two lost points between B and C. In addition, the height difference between B 
and C is higher than the minimum height value. 

 

 
Fig. 4. Lack of points between two consecutive points. 

 
The third case is similar to the second case. Generally, the distance from the sensor to the previous 

point is always shorter than the distance from the sensor to the current point. In opposite case, we also 
concluded that the previous point is a threshold point. This situation usually occured when the sensor 
moved in terrain which had many trees. In Fig. 5, point D is a threshold point because of the 
abnormality of the distance between the sensor and point D. In this situation, OD is greater than OE. 

 

 
Fig. 5. Abnormality of the distance between the sensor and a point. 

 

2.2 Finding Next Start-Ground Point 
 

After a non-ground point, a point lower than the previous point was detected, it could be a new start-
ground point, which we have called a potential point. Objects such as cars have different heights at 
different locations. For example, the roof of a car is higher than front and rear. Because of these 
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variables, if we had one point on the roof of a car and the following point on the rear, both of these are 
considered non-ground points. Therefore, some potential points cannot be start-ground points. For 
consistency, we calculated the height difference between a potential point and the nearest threshold 
point. If the height difference was smaller than ����, the potential point was considered a new start-
ground point. Otherwise, we assigned the “non-ground” label to the previous point and attempted to 
find a new start-ground point by considering the current and following points. In Fig. 6, B and G are 
threshold points. E and F are potential candidates for start-ground points. However, F is only a new 
start-ground point because E does not meet the second condition. 

 

 
Fig. 6. Example of a next start-ground point. 

 
 

3. Experiments and Analysis 

For our experiments and analysis, we employed datasets obtained from a Velodyne HDL-32E sensor. 
We also used a sample dataset given by Velodyne LiDAR Inc. [11]. To run our algorithm, we used a PC 
equipped with an Intel Core i5-4690 3.5 GHz CPU and 8 GB RAM. In this experiment ground and non-
ground points are not fixed. For example, if a slope is larger than 50° and the vehicle is not able to climb 
it, we concluded that the slope was a non-ground object. Otherwise, the slope is considered a ground 
object. We defined the 	���� value to ignore the noises of the 3D range sensor. In our experiments, we 
chose either ����=45° or	����=10 cm depending on the capabilities of our vehicle and sensor. These 
values are not dependent on the features of the terrain. For other vehicles, different values can be 
chosen. 

All experiments produced favorable results on both flat and non-flat terrains. Fig. 7 shows the result 
from one frame of data segmented at a crossroad. Figs. 8 and 9 show the results after the accumulation 
of many frames in a single point cloud. Red and blue points represent ground and non-ground points, 
respectively. The road is well segmented and defined as ground, and the trees as non-ground. In 
addition, Fig. 9 shows the side view of a varying terrain. The terrain contains both of flat and sloping 
mountain roads, however the segmentation results met our expectations. 

Each frame of data contains approximately 60,000 points. We showed the processing time by frame in 
Fig. 10. The average processing time of our algorithm was 4.7 ms. Therefore, we have possibility to 
process 213 frames per second (213 Hz). Moreover, the Velodyne sensor returns only 10 frames per 
second (10 Hz). Therefore, our segmentation system works well in real-time as it operates 21 times 
faster than the sensor. We also compare the processing time of our research with previous methods as 
shown in Table 1 producing favorable results at higher speeds than previous methods. 
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Fig. 7. Result of one frame segmentation in top view. 

 

 
Fig. 8. Result of a flat terrain segmentation in perspective view. 

 

 
Fig. 9. Result of a sloped terrain segmentation in side view. 
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Fig. 10. Processing time by frame of our ground segmentation algorithm. 
 

Table 1. Comparison of processing time per frame 
Method Average processing time per frame (ms) 

[7] 602 
[8] 19.31 

Our method 4.7 

 

 

4. Conclusion 

In this paper, we proposed a new approach for a preprocessing step of an autonomous moving system 
using a Velodyne Lidar sensor. Our ground segmentation algorithm processed each frame of data using 
local coordinates. The core function of our algorithm is the ability to divide the point cloud in each 
vertical line. In addition, we considered some features of the vertical line via threshold and start-ground 
points. The experiments showed that the proposed algorithm achieves favorable results on data 
acquired in both flat and sloped environments, with an average processing time of 4.7 ms. The results 
are met our expectations. In future work, we will enhance the algorithm for segmentation of bumpy 
terrain. 
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