DOI QR코드

DOI QR Code

Esculetin Inhibits Adipogenesis and Increases Antioxidant Activity during Adipocyte Differentiation in 3T3-L1 Cells

  • Kim, Younghwa (School of Food Biotechnology and Nutrition, Kyungsung University) ;
  • Lee, Junsoo (Division of Food and Animal Sciences, Chungbuk National University)
  • Received : 2017.05.10
  • Accepted : 2017.06.05
  • Published : 2017.06.30

Abstract

This study was conducted to investigate the anti-adipogenic activity of esculetin (ECT) which is reported to be attributable to the modulation of antioxidant enzymes during adipogenesis. After six days of ECT treatment of 3T3-L1 cells, lipid accumulation was determined by Oil red O staining. The levels of glutathione (GSH) and reactive oxygen species (ROS), and the activities of antioxidant enzymes including glutathione reductase, glutathione peroxidase (GPx), and catalase were examined. In addition, the protein expression of glutamate-cysteine ligase catalytic subunit (GCLC) and heme oxygenase-1 (HO-1) was measured by Western blot. ECT significantly inhibited lipid accumulation by approximately 80% and ROS production in a concentration-dependent manner. GSH level and GPx activity were increased by ECT by approximately 1.3-fold and 1.7-fold compared to the control group, respectively. GCLC and HO-1 expression were elevated by ECT. These results showed that ECT treatments strongly inhibit adipogenesis, increase GSH level, and upregulate the expression of GCLC and HO-1, possibly by decreasing ROS production in 3T3-L1 cells during adipogenesis.

Keywords

References

  1. Shah AM, Channon KM. 2004. Free radicals and redox signalling in cardiovascular disease. Heart 90: 486-487. https://doi.org/10.1136/hrt.2003.029389
  2. Halliwell B, Gutteridge JM, Cross CE.1992. Free radicals, antioxidants, and human disease: where are we now?. J Lab Clin Med 119: 598-620.
  3. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114: 1752-1761. https://doi.org/10.1172/JCI21625
  4. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. 2009. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284: 10601-10609. https://doi.org/10.1074/jbc.M808742200
  5. Messarah M, Boulakoud MS, Boumendjel A, Abdennour C, El Feki A. 2007. The impact of thyroid activity variations on some oxidizing-stress parameters in rats. C R Biol 330: 107-112. https://doi.org/10.1016/j.crvi.2006.11.004
  6. Kim Y, Choi Y, Ham H, Jeong HS, Lee J. 2013. Protective effects of oligomeric and polymeric procyanidin fractions from defatted grape seeds on tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. Food Chem 137: 136-141. https://doi.org/10.1016/j.foodchem.2012.10.006
  7. Choi Y, Lee SM, Kim Y, Yoon J, Jeong HS, Lee J. 2013. A tocotrienol-rich fraction from grape seeds inhibits oxidative stress induced by tert-butyl hydroperoxide in HepG2 cells. J Med Food 13: 1240-1246.
  8. Zhao CR, Gao ZH, Qu XJ. 2010. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol 34: 523-533. https://doi.org/10.1016/j.canep.2010.06.012
  9. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P. 2004. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101: 2040-2045. https://doi.org/10.1073/pnas.0307301101
  10. Motohashi H, Yamamoto M. 2004. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10: 549-557. https://doi.org/10.1016/j.molmed.2004.09.003
  11. Jaiswal AK. 2004. Nrf2 signaling in coordinated activation of antioxidant gene express. Free Radic Biol Med 36: 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  12. Masamoto Y, Ando H, Murata Y, Shimoishi Y, Tada M, Takahata K. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L.. Biosci Biotechnol Biochem 67: 631-634. https://doi.org/10.1271/bbb.67.631
  13. Tien YC, Liao JC, Chiu CS, Huang TH, Huang CY, Chang WT, Peng WH. 2011. Esculetin ameliorates carbon tetrachloride- mediated hepatic apoptosis in rats. Int J Mol Sci 12: 4053-4067. https://doi.org/10.3390/ijms12064053
  14. Kimura Y, Sumiyoshi M. 2015. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumorassociated macrophages and/or G1 arrest in tumor cells. Eur J Pharmacol 746: 115-125. https://doi.org/10.1016/j.ejphar.2014.10.048
  15. Prabakaran D, Ashokkumar N. 2013. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie 95: 366-373. https://doi.org/10.1016/j.biochi.2012.10.008
  16. Lin HC, Tsai SH, Chen CS, Chang YC, Lee CM, Lai ZY, Lin CM. 2008. Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochem Pharmacol 75: 1416-1425. https://doi.org/10.1016/j.bcp.2007.11.023
  17. Kaneko T, Tahara S, Takabayashi F. 2003. Suppression of lipid hydroperoxide-induced oxidative damage to cellular DNA by esculetin. Biol Pharm Bull 26: 840-844. https://doi.org/10.1248/bpb.26.840
  18. Kim Y, Lee J. 2015. Esculetin, a coumarin derivative, suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. J Funct Foods 12: 509-515. https://doi.org/10.1016/j.jff.2014.12.004
  19. Lee OH, Seo MJ, Choi HS, Lee BY. 2012. Pycnogenol(R) inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses. Phytother Res 26: 403-411.
  20. Chang TH, Polakis SE. 1978. Differentiation of 3T3-Ll fibroblasts to adipocytes: effect of insulin and indomethacin on the levels of insulin receptors. J Biol Chem 253: 4693-4696.
  21. Tobe K, Kasuga M, Kitasato H, Takaku F, Takano T, Segawa K. 1987. Differential effects of DNA tumor virus nuclear oncogene products on adipocyte differentiation. FEBS Lett 215: 345-349. https://doi.org/10.1016/0014-5793(87)80175-8
  22. Wang H, Joseph JA. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0
  23. Baker MA, Cerniglia GJ, Zaman A. 1990. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190: 360-365. https://doi.org/10.1016/0003-2697(90)90208-Q
  24. Smith IK, Vierheller TL, Thorne CA. 1988. Assay of glutathione reductase in crude tissue homogenates using 5,5’-dithiobis( 2-nitrobenzoic acid). Anal Biochem 175: 408-413. https://doi.org/10.1016/0003-2697(88)90564-7
  25. Flohe L, Gunzler WA. 1984. Assays of glutathione peroxidase. Method Enzymol 105: 114-121.
  26. Fossati P, Prencipe L, Berti G. 1980. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26: 227-231.
  27. Yang JY, Della-Fera MA, Hartzell DL, Nelson-Dooley C, Hausman DB, Baile CA. 2006. Esculetin induces apoptosis and inhibits adipogenesis in 3T3-L1 cells. Obesity 14: 1691-1699. https://doi.org/10.1038/oby.2006.194
  28. Schröder K, Wandzioch K, Helmcke I, Brandes RP. 2009. Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29: 239-245. https://doi.org/10.1161/ATVBAHA.108.174219
  29. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, Stocker R, Van Remmen H, Kraegen EW, Cooney GJ, Richardson AR, James DE. 2009. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 106: 17787-17792. https://doi.org/10.1073/pnas.0902380106
  30. Galinier A, Carriere A, Fernandez Y, Carpene C, Andre M, Caspar-Bauguil S, Thouvenot JP, Periquet B, Penicaud L, Casteilla L. 2006. Adipose tissue proadipogenic redox changes in obesity. J Biol Chem 281: 12682-12687. https://doi.org/10.1074/jbc.M506949200
  31. Vigilanza P, Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. 2011. Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J Cell Physiol 226: 2016-2024. https://doi.org/10.1002/jcp.22542
  32. Martín MA, Ramos S, Mateos R, Izquierdo-Pulido M, Bravo L, Goya L. 2010. Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin. Phytother Res 24: 503-509.
  33. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. 1997. An Nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313-322. https://doi.org/10.1006/bbrc.1997.6943
  34. Hayes JD, Ellis EM, Neal GE, Harrison DJ, Manson MM. 1999. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. Biochem Soc Symp 64: 141-168.
  35. Kusunoki C, Yang L, Yoshizaki T, Nakagawa F, Ishikado A, Kondo M, Morino K, Sekine O, Ugi S, Nishio Y, Kashiwagi A, Maegawa H. 2013. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun 430: 225-230. https://doi.org/10.1016/j.bbrc.2012.10.115
  36. Takahashi T, Tabuchi T, Tamaki Y, Kosaka K, Takikawa Y, Satoh T. 2009. Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun 382: 549-554. https://doi.org/10.1016/j.bbrc.2009.03.059
  37. Kim Y, Park Y, Namkoong S, Lee J. 2014. Esculetin inhibits the inflammatory response by inducing heme oxygenase-1 in cocultured macrophages and adipocytes. Food Funct 5: 2371-2377. https://doi.org/10.1039/C4FO00351A

Cited by

  1. Jaceosidin Inhibits Adipogenesis in 3T3-L1 Adipocytes through the PPARγ Pathway vol.13, pp.10, 2017, https://doi.org/10.1177/1934578x1801301014
  2. Anti-Osteoporotic and Anti-Adipogenic Effects of the Water Extract of Drynaria roosii Nakaike in Ovariectomized Mice Fed a High-Fat Diet vol.24, pp.17, 2017, https://doi.org/10.3390/molecules24173051