페로브스카이트 기반 탠덤태양전지 연구 동향

  • 박민아 (서울대학교 재료공학부) ;
  • 김진영 (서울대학교 재료공학부)
  • Published : 2017.06.30

Abstract

페로브스카이트 태양전지는 지난 5년간 광전변환효율이 약 10%에서 22%로 증가하는 급속한 발전으로 주목 받고 있으며, 현재 대면적 공정개발 및 안정성 향상 등의 상용화 기반기술에 대한 연구개발 역시 활발히 진행되고 있다. 이와 동시에, 페로브스카이트는 실리콘 태양전지(1.1eV), CIGS 태양전지(1.1~1.2 eV)와 비교하여 상대적으로 높은 밴드갭에너지(>1.5eV)를 가지고, 할라이드 물질 조성 제어를 통해 쉽게 밴드갭에너지를 조절할 수 있으며, 저온 용액 공정이 가능한 특성에 기인하여 페로브스카이트 태양전지를 상부셀로 이용한 탠덤 태양전지에 대한 다양한 시도가 이루어 지고 있다. 페로브스카이트의 흡광계수, 반사율 등 광학적 특성에서 기인하는 요소들을 고려하면 직렬 형태의 이중접합에서 최대 32%의 광전변환효율 얻을 수 있을 것으로 예측된다. 따라서 본 원고에서는 페로브스카이트, 실리콘 및 Cu(In, Ga) $(S,Se)_2$ (CIGS) 같은 다양한 태양전지와 함께 페로브스카이트 태양전지를 활용하는 탠덤태양전지의 현재 연구 동향을 논의하고자 한다.

Keywords

References

  1. Shockley, W., Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32(3), 510-519. https://doi.org/10.1063/1.1736034
  2. National Renewable Energy Laboratory(NREL) efficiency chart.
  3. De Vos, A. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D: Appl. Phys. 1980, 13(5), 839. https://doi.org/10.1088/0022-3727/13/5/018
  4. Lee, J.-W., Hsieh, Y.-T., Marco, N. D., Bae, S.-H., Han, Q., Yang, Y. Halide perovskite for tandem solar cells. J.Phys. Chem. Lett. 2017, 8, 1999-2011. https://doi.org/10.1021/acs.jpclett.7b00374
  5. Albrecht, S., Saliba, M., Baena, J. P. C., Lang, F., Kegelmann, L., Mews, M., Steier, L., Abate, A., Rappich, J., Korte, L. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 2016, 9(1), 81-88. https://doi.org/10.1039/C5EE02965A
  6. Mailoa, J. P., Bailie, C. D., Johlin, E. C., Hoke, E. T., Akey, A. J., Nguyen, W. H., McGehee, M. D., Buonassisi, T. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 2015, 106(12), 121105. https://doi.org/10.1063/1.4914179
  7. Werner, J. r. m., Weng, C.-H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., Niesen, B., Ballif, C. Efficient monolithic perovskite/silicon tandem solar cell with cell $area>1cm^2$. J. Phys. Chem. Lett. 2016, 7(1), 161-166. https://doi.org/10.1021/acs.jpclett.5b02686
  8. Werner, J., Barraud, L., Walter, A., Brauninger, M., Sahli, F., Sacchetto, D., Tetreault, N., Paviet-Salomon, B., Moon, S.-J., Allebe, C. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 2016, 1(2), 474-480. https://doi.org/10.1021/acsenergylett.6b00254
  9. Bailie, C. D. Metal-Halide Perovskites: The Next Evolution in Photovoltaics. IEEE Silicon Valley Photovoltaic Society(SVPVS) Lecture, Palo Alto, CA, September 21, 2016.
  10. Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., Nguyen, W. H., Burschka, J., Pellet, N., Lee, J. Z., Gratzel, M. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 2015, 8(3), 956-963. https://doi.org/10.1039/C4EE03322A
  11. Chen, B., Bai, Y., Yu, Z., Li, T., Zheng, X., Dong, Q., Shen, L., Boccard, M., Gruverman, A., Holman, Z. Efficient Semitransparent Perovskite Solar Cells for 23.0%-Efficiency Perovskite/Silicon Four-Terminal Tandem Cells. Adv. Energy Mater. 2016, 6(19), 1601128. https://doi.org/10.1002/aenm.201601128
  12. Uzu, H., Ichikawa, M., Hino, M., Nakano, K., Meguro, T., Hernandez, J. L., Kim, H.-S., Park, N.-G., Yamamoto, K. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system. Appl. Phys. Lett. 2015, 106(1), 013506. https://doi.org/10.1063/1.4905177
  13. Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., McGehee, M. D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6(1), 613-617. https://doi.org/10.1039/C4SC03141E
  14. Beal, R. E., Slotcavage, D. J., Leijtens, T., Bowring, A. R., Belisle, R. A., Nguyen, W. H., Burkhard, G. F., Hoke, E. T., McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7(5), 746-751. https://doi.org/10.1021/acs.jpclett.6b00002
  15. McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Horantner, M. T., Haghighirad, A., Sakai, N., Korte, L., Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351(6269), 151-155. https://doi.org/10.1126/science.aad5845
  16. Yum, J.-H., Lee, J.-W., Kim, Y., Humphry-Baker, R., Park, N.-G., Gratzel, M. Panchromatic light harvesting by dye-and quantum dot sensitized solar cells. Sol. Energy 2014, 109, 183-188. https://doi.org/10.1016/j.solener.2014.08.030
  17. Chirila, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A. R., Fella, C., Kranz, L., Perrenoud, J., Seyrling, S. et al. Highly efficient Cu(In, Ga)$Se_2$ solar cells grown on flexible polymer films. Nat. Mater. 2011, 10(11), 857-861. https://doi.org/10.1038/nmat3122
  18. Kurtz, S. R., Faine, P., Olson, J. Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter. J. Appl. Phys. 1990, 68(4), 1890-1895. https://doi.org/10.1063/1.347177
  19. Todorov, T., Gershon, T., Gunawan, O., Lee, Y. S., Sturdevant, C., Chang, L. Y., Guha, S. Monolithic Perovskite-CIGS Tandem Solar Cells via In Situ Band Gap Engineering. Adv. Energy Mater. 2015, 5(23), 1500799. https://doi.org/10.1002/aenm.201500799
  20. Yang, Y., Chen, Q., Hsieh, Y.-T., Song, T.-B., Marco, N. D., Zhou, H., Yang, Y. Multilayer transparent top electrode for solution processed perovskite/Cu (In, Ga) (Se, S)$_2$ four terminal tandem solar cells. ACS Nano 2015, 9(7), 7714-7721. https://doi.org/10.1021/acsnano.5b03189
  21. Kranz, L., Abate, A., Feurer, T., Fu, F., Avancini, E., Lockinger, J., Reinhard, P., Zakeeruddin, S. M., Gratzel, M., Buecheler, S. et al. High-efficiency polycrystalline thin film tandem solar cells. J. Phys. Chem. Lett. 2015, 6(14), 2676-2681. https://doi.org/10.1021/acs.jpclett.5b01108
  22. Fu, F., Feurer, T., Jager, T., Avancini, E., Bissig, B., Yoon, S., Buecheler, S., Tiwari, A. N. Low-temperature-processed efficient semitransparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 2015, 6, 8932-8932. https://doi.org/10.1038/ncomms9932
  23. Fu, F., Feurer, T., Weiss, T. P., Pisoni, S., Avancini, E., Andres, C., Buecheler, S., Tiwari, A. N. High-efficiency inverted semitransparent planar perovskite solar cells in substrate configuration. Nat. Energy 2016, 2, 16190.
  24. Bush, K. A., Bailie, C. D., Chen, Y., Bowring, A. R., Wang, W., Ma, W., Leijtens, T., Moghadam, F., McGehee, M. D. Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. Adv. Mater. 2016, 28, 3937. https://doi.org/10.1002/adma.201505279
  25. Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13(9), 897-903. https://doi.org/10.1038/nmat4014
  26. Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., Snaith, H. J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7(3), 982-988. https://doi.org/10.1039/c3ee43822h
  27. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348(6240), 1234-1237. https://doi.org/10.1126/science.aaa9272
  28. Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I. Compositional engineering of perovskite materials for highperformance solar cells. Nature 2015, 517(7535), 476-480. https://doi.org/10.1038/nature14133
  29. Heo, J. H., Im, S. H. $CH_3NH_3PbBr_3-CH_3NH_3PbI_3$ perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 2015, 28, 5121-5125.
  30. Jiang, F., Liu, T., Luo, B., Tong, J., Qin, F., Xiong, S., Li, Z., Zhou, Y. A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 2016, 4(4), 1208-1213. https://doi.org/10.1039/C5TA08744A
  31. Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G. E., Pathak, S. K., Johnston, M. B. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7(9), 3061-3068. https://doi.org/10.1039/C4EE01076K
  32. Hao, F., Stoumpos, C. C., Chang, R. P., Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136(22), 8094-8099. https://doi.org/10.1021/ja5033259
  33. Zuo, F., Williams, S. T., Liang, P. W., Chueh, C. C., Liao, C. Y., Jen, A. K. Y. Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2014, 26(37), 6454-6460. https://doi.org/10.1002/adma.201401641
  34. Yang, Z., Rajagopal, A., Chueh, C. C., Jo, S. B., Liu, B., Zhao, T., Jen, A. K. Y. Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells. Adv. Mater. 2016, 28(40), 8990-8997. https://doi.org/10.1002/adma.201602696
  35. Eperon, G. E., Leijtens, T., Bush, K. A., Prasanna, R., Green, T., Wang, J. T.-W., McMeekin, D. P., Volonakis, G., Milot, R. L., May, R. et al. Perovskiteperovskite tandem photovoltaics with optimized band gaps. Science 2016, 354(6314), 861-865. https://doi.org/10.1126/science.aaf9717
  36. Lee, J. W., Kim, D. H., Kim, H. S., Seo, S. W., Cho, S. M., Park, N. G. Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell. Adv. Energy Mater. 2015, 5(20), 1501310. https://doi.org/10.1002/aenm.201501310
  37. Yi, C., Luo, J., Meloni, S., Boziki, A., Ashari-Astani, N., Gratzel, C., Zakeeruddin, S. M., Rothlisberger, U., Gratzel, M. Entropic stabilization of mixed A-cation $ABX_3$ metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9(2), 656-662. https://doi.org/10.1039/C5EE03255E
  38. Lee, S. J., Shin, S. S., Kim, Y. C., Kim, D., Ahn, T. K., Noh, J. H., Seo, J., Seok, S. I. Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through $SnF_2$-Pyrazine Complex. J. Am. Chem. Soc. 2016, 138(12), 3974-3977. https://doi.org/10.1021/jacs.6b00142
  39. Xu, X., Chueh, C.-C., Yang, Z., Rajagopal, A., Xu, J., Jo, S. B., Jen, A. K. Y. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 2017, 34, 392-398. https://doi.org/10.1016/j.nanoen.2017.02.040
  40. Forgacs, D., Gil-Escrig, L., Perez-Del-Rey, D., Momblona, C., Werner, J., Niesen, B., Ballif, C., Sessolo, M., Bolink, H. J. Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017, 7, 1602121. https://doi.org/10.1002/aenm.201602121