References
- National Renewable Energy Labs(NREL) Efficiency Chart. https://www.nrel.gov/pv/assets/images/efficiency-chart.png
- C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52, 9019-9038 (2013). https://doi.org/10.1021/ic401215x
- N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci., 7, 3061-3068 (2014). https://doi.org/10.1039/C4EE01076K
- F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photon., 8, 489-494 (2014). https://doi.org/10.1038/nphoton.2014.82
- T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar, and N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications, J. Mater. Chem. A, 3, 14996-15000 (2015). https://doi.org/10.1039/C5TA00190K
- F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, and N. Zhao, Organic cation-dependent degradation mechanism of organotin halide perovskites, Adv. Funct. Mater., 26, 3417-3423 (2016). https://doi.org/10.1002/adfm.201505127
- W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.-G. Xiong, and Y. Yan, Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%, Adv. Mater., 28, 9333-9340 (2016). https://doi.org/10.1002/adma.201602992
-
Z. Chen, J. J. Wang, Y. Ren, C. Yu, and K. Shum, Schottky solar cells based on
$CsSnI_3$ thin-films, Appl. Phys. Lett., 101, 093901 (2012). https://doi.org/10.1063/1.4748888 - M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. GrGtzel, S. G. Mhaisalkar, and N. Mathews, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation, Adv. Mater., 26, 7122-7127 (2014). https://doi.org/10.1002/adma.201401991
-
N. Wang, Y. Zhou, M.-G. Ju, H. F. Garces, T. Ding, S. Pang, X. C. Zeng, N. P. Padture, and X. W. Sun, Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-
${\gamma}$ -CsSnI3 thin films, Adv. Energy Mater., 6, 1601130 (2016). https://doi.org/10.1002/aenm.201601130 - T.-B. Song, T. Yokoyama, S. Aramaki, and M. G. Kanatzidis, Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive, ACS Energy Lett., 2, 897-903 (2017). https://doi.org/10.1021/acsenergylett.7b00171
-
D. Sabba, H. K. Mulmudi, R. R. Prabhakar, T. Krishnamoorthy, T. Baikie, P. P. Boix, S. Mhaisalkar, and N. Mathews, Impact of anionic
$Br^-$ substitution on open circuit voltage in lead free perovskite ($CsSnI_{3-x}Br_x$ ) solar cells, J. Phys. Chem. C, 119, 1763-1767 (2015). https://doi.org/10.1021/jp5126624 -
F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, and M. G. Kanatzidis, Solvent-mediated crystallization of
$CH_3NH_3SnI_3$ films for heterojunction depleted perovskite solar cells, J. Am. Chem. Soc., 137, 11445 (2015). https://doi.org/10.1021/jacs.5b06658 -
S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, and S. I. Seok, Fabrication of efficient formamidinium tin iodide perovskite solar cells through
$SnF_2$ -pyrazine complex, J. Am. Chem. Soc., 138, 3974-3977 (2016). https://doi.org/10.1021/jacs.6b00142 -
T. Yokoyama, D. H. Cao, C. C. Stoumpos, T.-B. Song, Y. Sato, S. Aramaki, and M. G. Kanatzidis, Overcoming short-circuit in lead-free
$CH_3NH_3SnI_3$ perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process, J. Phys. Chem. Lett., 7, 776-782 (2016). https://doi.org/10.1021/acs.jpclett.6b00118 - T. Yokoyama, T.-B. Song, D. H. Cao, C. C. Stoumpos, S. Aramaki, and M. G. Kanatzidis, The origin of lower hole carrier concentratino in methylammonium tin halide films grown by a vapor-assisted solution process, ACS Energy Lett., 2, 22-28 (2017). https://doi.org/10.1021/acsenergylett.6b00513
- T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, and M. G. Kanatzidis, Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells, J. Am. Chem. Soc., 139, 836-842 (2017). https://doi.org/10.1021/jacs.6b10734
- Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance, J. Am. Chem. Soc., 139, 6693-6699 (2017). https://doi.org/10.1021/jacs.7b01815
-
J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran, C. Piao, T. Lei, T.-B. Song, W. Ke, T. Yokoyama, X. Hou, and M. G. Kanatzidis, Multichannel interdiffusion driven
$FASnI_3$ film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells, Adv. Mater., 1606964 (2017). - T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S. G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A, 3, 23829-23832 (2015). https://doi.org/10.1039/C5TA05741H
- C. C. Stoumpos, L. Fraser, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, and M. G. Kanatzidis, Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps and strong nonlinear optical properties, J. Am. Chem. Soc., 137, 6804-6819 (2015). https://doi.org/10.1021/jacs.5b01025
-
B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, Bismuth based hybrid perovskites
$A_3Bi_2I_9$ (A:methylammonium or cesium) for solar cell application, Adv. Mater., 27, 6806-6813 (2015). https://doi.org/10.1002/adma.201501978 - R. L. Z. Hoye, R. E. Brandt, A. Osherov, V. Stevanovic, S. D. Stranks, M. W. B. Wilson, H. Kim, A. J. Akey, J. D. Perkins, V. Bulovic, and T. Buonassisi, Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber, Chem. Eur. J., 22, 2605-2610 (2016). https://doi.org/10.1002/chem.201505055
-
A. J. Lehner, D. H. Fabini, H. A. Evans, C.-A. Hebert, S. R. Smock, J. Hu, H. Wang, J. W. Zwanziger, M. L. Chabinyc, and R. Seshadri, Crystal and electronic structures of complex bismuth iodides
$A_3Bi_2I_9$ (A=K, Rb, Cs) related to perovskite: Aiding the rational design of photovoltaics, Chem. Mater., 27, 7137-7148 (2015). https://doi.org/10.1021/acs.chemmater.5b03147 - Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim, M. Liu, L. N. Quan, F. P. GarcGa de Arquer, R. Comin, J. Z. Fan, and E. H. Sargent, Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics, Angew. Chem. Int. Ed., 55, 1-6 (2016). https://doi.org/10.1002/anie.201510990
- A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc., 138, 2138-2141 (2016). https://doi.org/10.1021/jacs.5b13294
- G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, and F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett., 7, 1254-1259 (2016). https://doi.org/10.1021/acs.jpclett.6b00376