비납 페로브스카이트 태양전지

  • 이선주 (그린화학소재연구본부, 한국화학연구원)
  • Published : 2017.06.30

Abstract

페로브스카이트 태양전지는 광흡수층으로 사용하는 페로브스카이트 물질의 우수한 전기적, 광학적 성질 덕분에 단기간에 전례 없는 효율 향상을 이루어 유망한 차세대 태양전지로 주목받고 있다. 그와 함께 중심 금속으로 사용되는 독성의 납을 대체하기 위한 연구가 활발하게 진행되고 있다. 본 원고에서는 비납 페로브스카이트 물질을 이용한 태양전지 연구 동향과 향후 전망에 대해 논하고자 한다.

Keywords

References

  1. National Renewable Energy Labs(NREL) Efficiency Chart. https://www.nrel.gov/pv/assets/images/efficiency-chart.png
  2. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52, 9019-9038 (2013). https://doi.org/10.1021/ic401215x
  3. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci., 7, 3061-3068 (2014). https://doi.org/10.1039/C4EE01076K
  4. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photon., 8, 489-494 (2014). https://doi.org/10.1038/nphoton.2014.82
  5. T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar, and N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications, J. Mater. Chem. A, 3, 14996-15000 (2015). https://doi.org/10.1039/C5TA00190K
  6. F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, and N. Zhao, Organic cation-dependent degradation mechanism of organotin halide perovskites, Adv. Funct. Mater., 26, 3417-3423 (2016). https://doi.org/10.1002/adfm.201505127
  7. W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.-G. Xiong, and Y. Yan, Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%, Adv. Mater., 28, 9333-9340 (2016). https://doi.org/10.1002/adma.201602992
  8. Z. Chen, J. J. Wang, Y. Ren, C. Yu, and K. Shum, Schottky solar cells based on $CsSnI_3$ thin-films, Appl. Phys. Lett., 101, 093901 (2012). https://doi.org/10.1063/1.4748888
  9. M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. GrGtzel, S. G. Mhaisalkar, and N. Mathews, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation, Adv. Mater., 26, 7122-7127 (2014). https://doi.org/10.1002/adma.201401991
  10. N. Wang, Y. Zhou, M.-G. Ju, H. F. Garces, T. Ding, S. Pang, X. C. Zeng, N. P. Padture, and X. W. Sun, Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-${\gamma}$-CsSnI3 thin films, Adv. Energy Mater., 6, 1601130 (2016). https://doi.org/10.1002/aenm.201601130
  11. T.-B. Song, T. Yokoyama, S. Aramaki, and M. G. Kanatzidis, Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive, ACS Energy Lett., 2, 897-903 (2017). https://doi.org/10.1021/acsenergylett.7b00171
  12. D. Sabba, H. K. Mulmudi, R. R. Prabhakar, T. Krishnamoorthy, T. Baikie, P. P. Boix, S. Mhaisalkar, and N. Mathews, Impact of anionic $Br^-$ substitution on open circuit voltage in lead free perovskite ($CsSnI_{3-x}Br_x$) solar cells, J. Phys. Chem. C, 119, 1763-1767 (2015). https://doi.org/10.1021/jp5126624
  13. F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, and M. G. Kanatzidis, Solvent-mediated crystallization of $CH_3NH_3SnI_3$ films for heterojunction depleted perovskite solar cells, J. Am. Chem. Soc., 137, 11445 (2015). https://doi.org/10.1021/jacs.5b06658
  14. S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, and S. I. Seok, Fabrication of efficient formamidinium tin iodide perovskite solar cells through $SnF_2$-pyrazine complex, J. Am. Chem. Soc., 138, 3974-3977 (2016). https://doi.org/10.1021/jacs.6b00142
  15. T. Yokoyama, D. H. Cao, C. C. Stoumpos, T.-B. Song, Y. Sato, S. Aramaki, and M. G. Kanatzidis, Overcoming short-circuit in lead-free $CH_3NH_3SnI_3$ perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process, J. Phys. Chem. Lett., 7, 776-782 (2016). https://doi.org/10.1021/acs.jpclett.6b00118
  16. T. Yokoyama, T.-B. Song, D. H. Cao, C. C. Stoumpos, S. Aramaki, and M. G. Kanatzidis, The origin of lower hole carrier concentratino in methylammonium tin halide films grown by a vapor-assisted solution process, ACS Energy Lett., 2, 22-28 (2017). https://doi.org/10.1021/acsenergylett.6b00513
  17. T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, and M. G. Kanatzidis, Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells, J. Am. Chem. Soc., 139, 836-842 (2017). https://doi.org/10.1021/jacs.6b10734
  18. Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance, J. Am. Chem. Soc., 139, 6693-6699 (2017). https://doi.org/10.1021/jacs.7b01815
  19. J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran, C. Piao, T. Lei, T.-B. Song, W. Ke, T. Yokoyama, X. Hou, and M. G. Kanatzidis, Multichannel interdiffusion driven $FASnI_3$ film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells, Adv. Mater., 1606964 (2017).
  20. T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S. G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A, 3, 23829-23832 (2015). https://doi.org/10.1039/C5TA05741H
  21. C. C. Stoumpos, L. Fraser, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, and M. G. Kanatzidis, Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps and strong nonlinear optical properties, J. Am. Chem. Soc., 137, 6804-6819 (2015). https://doi.org/10.1021/jacs.5b01025
  22. B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, Bismuth based hybrid perovskites $A_3Bi_2I_9$(A:methylammonium or cesium) for solar cell application, Adv. Mater., 27, 6806-6813 (2015). https://doi.org/10.1002/adma.201501978
  23. R. L. Z. Hoye, R. E. Brandt, A. Osherov, V. Stevanovic, S. D. Stranks, M. W. B. Wilson, H. Kim, A. J. Akey, J. D. Perkins, V. Bulovic, and T. Buonassisi, Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber, Chem. Eur. J., 22, 2605-2610 (2016). https://doi.org/10.1002/chem.201505055
  24. A. J. Lehner, D. H. Fabini, H. A. Evans, C.-A. Hebert, S. R. Smock, J. Hu, H. Wang, J. W. Zwanziger, M. L. Chabinyc, and R. Seshadri, Crystal and electronic structures of complex bismuth iodides $A_3Bi_2I_9$(A=K, Rb, Cs) related to perovskite: Aiding the rational design of photovoltaics, Chem. Mater., 27, 7137-7148 (2015). https://doi.org/10.1021/acs.chemmater.5b03147
  25. Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim, M. Liu, L. N. Quan, F. P. GarcGa de Arquer, R. Comin, J. Z. Fan, and E. H. Sargent, Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics, Angew. Chem. Int. Ed., 55, 1-6 (2016). https://doi.org/10.1002/anie.201510990
  26. A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc., 138, 2138-2141 (2016). https://doi.org/10.1021/jacs.5b13294
  27. G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, and F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett., 7, 1254-1259 (2016). https://doi.org/10.1021/acs.jpclett.6b00376