DOI QR코드

DOI QR Code

Arsenic Speciation and Risk Assessment of Miscellaneous Cereals by HPLC-ICP-MS

HPLC-ICP-MS를 활용한 잡곡의 비소 화학종 및 위해 분석

  • An, Jae-Min (Division of Safety Analysis, Experiment & Research Institute, National Agriculture Products Quality Management Service) ;
  • Hong, Kyong-Suk (Division of Safety Analysis, Experiment & Research Institute, National Agriculture Products Quality Management Service) ;
  • Kim, Sung-Youn (Division of Safety Analysis, Experiment & Research Institute, National Agriculture Products Quality Management Service) ;
  • Kim, Dae-Jung (Division of Safety Analysis, Experiment & Research Institute, National Agriculture Products Quality Management Service) ;
  • Lee, Ho-Jin (Division of Safety Analysis, Experiment & Research Institute, National Agriculture Products Quality Management Service) ;
  • Shin, Hee-Chang (Division of Safety Analysis, Experiment & Research Institute, National Agriculture Products Quality Management Service)
  • 안재민 (국립농산물품질관리원 시험연구소 안전성분석과) ;
  • 홍경숙 (국립농산물품질관리원 시험연구소 안전성분석과) ;
  • 김성연 (국립농산물품질관리원 시험연구소 안전성분석과) ;
  • 김대중 (국립농산물품질관리원 시험연구소 안전성분석과) ;
  • 이호진 (국립농산물품질관리원 시험연구소 안전성분석과) ;
  • 신희창 (국립농산물품질관리원 시험연구소 안전성분석과)
  • Received : 2017.06.16
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

BACKGROUND: Miscellaneous cereal have been largely consumed in Korea as due to their physiological functions beneficial to human health. The cereals are currently a social concern because they have been found to contain heavy metals. Thus, monitoring heavy metals in the cereals is an important requirement for food safety analysis. In this study, we determined arsenic concentration in the cereals randomly harvested from different markets. METHODS AND RESULTS: Inorganic arsenic was determined by ICP-MS coupled with HPLC system. The HPLC-ICP-MS analysis was optimized based on the limit of detection and recover test to reach $0.13-1.24{\mu}g/kg$ and 94.3-102.1%, respectively. The concentrations of inorganic arsenic equivalent to daily exposure were levels of $19.91{\mu}g/day$ in mixed grain, $1.07{\mu}g/day$ in glutinous rice, $0.77{\mu}g/day$ in black brown rice, $0.13{\mu}g/day$ in barley and $0.11{\mu}g/day$ in soybeans. CONCLUSION: The levels of arsenic in miscellaneous cereals were found lower than the recommended The Joint FAO/WHO Expert Committee on Food Additives (JECFA) levels, suggesting that the cereals marketed in Korea are not potential concern in risk assessment.

본 연구는 최근 식생활 개선과 더불어 건강식의 원료로 수요가 크게 증가하고 있는 국내 유통 잡곡류에 대한 비소의 농도 수준을 확인하고, 비소를 구성하고 있는 화학종들을 분리 및 정량하여 섭취량에 따른 위해 수준을 확인하고자 하였다. 잡곡 12품목 188점을 현지 수거 후 분석에 활용하였는데, 총비소 분석은 일정량의 시료에 질산과 microwave를 이용하여 전처리한 후 ICP-MS를 이용하여 분석을 하였다. 비소 화학종 분리 및 정량을 위하여 HPLC로 화학종을 선택적으로 분리하고 검출기 역할을 하는 ICP-MS를 결합한 형태인 HPLC-ICP-MS를 이용하여 비소 화학종을 분리 분석하였다. 추출 용매로는 증류수, 말론산, 질산을 이용하여 추출 효율을 비교한 결과 1% 질산이 비소 화학종 모두에서 양호한 추출효율을 보여 최종적으로 1%질산을 추출용매로 선택하였고, 비소 화학종이 적절한 pH에서 전하를 띄는 특성을 고려하여 이동상으로는 ammonium carbonate, ammonium phosphate를 gradient 조건으로 분석하였다. 분석법 검증을 위하여 검출한계, 정량한계, 직선성 및 회수율 모두 AOAC에서 권장하는 기준을 만족하여 총비소 및 비소 화학종 분리 분석 결과에 대한 신뢰성을 확인하였다. 품목별 총비소 평균 농도는 찹쌀 $0.267{\pm}0.090mg/kg$, 검정현미 $0.241{\pm}0.137mg/kg$, 혼합곡 $0.183{\pm}0.045mg/kg$의 순으로 나타났고 무기비소 평균 농도는 찹쌀$0.149{\pm}0.056mg/kg$, 검정현미 $0.136{\pm}0.075mg/kg$, 혼합곡 $0.110{\pm}0.035mg/kg$의 순으로 총비소 결과값과 동일한 순서를 보였다. 총비소와 무기비소 농도의 상관 분석결과 총비소 농도가 높으면 무기비소 농도 또한 높은 농도를 보여 강한 양의 상관관계가 있음을 확인하였다. 위해 평가는 국민건강영양조사 자료(2012)를 근거로 잡곡에 대한 무기비소 위해 정도를 평가하였는데 품목별 무기비소 노출량은 혼합곡에서 $19.91{\mu}g/day$로 가장 높은 노출량을 보였고, 찹쌀 $1.07{\mu}g/day$, 검정현미 $0.77{\mu}g/day$, 보리 $0.13{\mu}g/day$, 콩 $0.11{\mu}g/day$ 순으로 나타났다. 품목별로는 혼합곡이 PTWI 대비 16.89%로 가장 높은 수준을 보였고, 찹쌀 0.91%, 검정현미 0.65%, 보리 0.11%, 콩 0.09%의 순으로 나타났다. 노출량에 따른 위해 수준은 잡곡 12품목 모두 일시에 섭취한다고 가정할 경우 PTWI 대비 18.69% 수준으로, 잡곡류에 대한 무기비소의 인체 노출 및 위해수준은 안전한 것으로 평가되었다.

Keywords

References

  1. AOAC. (2002). AOAC Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals, AOAC, 1-38.
  2. Horwitz, W. (2002). AOAC guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. AOAC International, Gaithersburg, MD, USA, 1219.
  3. Chen, H. L., Lee, C. C., Huang, W. J., Huang, H. T., Wu, Y. C., Hsu, Y. C., & Kao, Y. T. (2016). Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. Environmental Science and Pollution Research International, 23(5), 4481-4488. https://doi.org/10.1007/s11356-015-5623-z
  4. Choi, H., Park, S. K., Kim, D. S., & Kim, M. H. (2010). Risk assessment of arsenic in agricultural products. Korean Journal of Environmental Agriculture, 29(3), 266-272. https://doi.org/10.5338/KJEA.2010.29.3.266
  5. Choi, J. Y., Khan, N., Nho, E. Y., Choi, H., Park, K. S., Cho, M. J., Youn, H. J., & Kim, K. S. (2016). Speciation of arsenic in rice by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Analytical Letters, 49(12), 1926-1937. https://doi.org/10.1080/00032719.2015.1125912
  6. Devesa, V.,Martinez, A., Suner,M. A., Benito, V., Velez, D., & Montoro, R. (2001). Kinetic study of transformations of arsenic species during heat treatment .Journal of agricultural and food chemistry, 49(5), 2267-2271. https://doi.org/10.1021/jf001328e
  7. Huang, J. H., Ilgen, G., & Fecher, P. (2010). Quantitative chemical extraction for arsenic speciation in rice grains. Journal of Analytical Atomic Spectrometry, 25(6), 800-802. https://doi.org/10.1039/c002306j
  8. International Agency for Research on Cancer (IARC), (2004). Some drinking-water disinfectants and contaminants, including arsenic,(Vol. 84), International Agency for Research on Cancer, Lyon, France.
  9. Kim, S. T., Lim, Y. R., Park, K. S., & Chung, J. H. (2000). Simultaneuous determination of As (III) and As (V) in disused mine tailing samples by hydride generationinductively coupled plasma-atomic emission spectrometry. Analytical Science and Technology, 13(2), 189-193.
  10. Kim, J. Y., Kim, W. I., Kunhikrishnan, A., Kang, D. W., Kim, D, H., Lee, Y. J., Kim, Y. J., Kim, C. T. (2013). Determination of arsenic species in rice grains using HPLC-ICP-MS. Food Science and Biotechnology, 22(6), 1509-1513. https://doi.org/10.1007/s10068-013-0245-z
  11. Munoz, O., Diaz, O. P., Leyton, I., Nunez, N., Devesa, V., Suner, M. A., Velez, D., & Montoro, R. (2002). Vegetables collected in the cultivated Andean area of northern Chile: total and inorganic arsenic contents in raw vegetables. Journal of Agricultural and Food Chemistry, 50(3), 642-647. https://doi.org/10.1021/jf011027k
  12. Patrick, J. G., William, R. M., &John, C. (2015). FDA elemental analysis manual: section 4.7 Inductively coupled plasma-mass spectrometric determination of arsenic, cadmium, chromium, lead, mercury, and other elements in food using microwave assisted digestion. US Food and Drug Administration, Washington DC, USA, Available from: http://www.fda.gov/downloads/Food/FoodScienceResearch/LaboratoryMethods/UCM377005.pdf, 14.
  13. Raber, G., Stock, N., Hanel, P., Murko, M., Navratilova, J., & Francesconi, K. A. (2012). An improved HPLC-ICPMS method for determining inorganic arsenic in food: application to rice, wheat and tuna fish. Food chemistry, 134(1), 524-532. https://doi.org/10.1016/j.foodchem.2012.02.113
  14. Ronkart, S. N., Laurent, V., Carbonnelle, P., Mabon, N., Copin, A., & Barthelemy, J. P. (2007). Speciation of five arsenic species (arsenite, arsenate, MMAA V, DMAA V and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere, 66(4), 738-745. https://doi.org/10.1016/j.chemosphere.2006.07.056
  15. Rintala, E. M., Ekholm, P., Koivisto, P., Peltonen, K., & Venalainen, E. R. (2014). The intake of inorganic arsenic from long grain rice and rice-based baby food in Finland-Low safety margin warrants follow up. Food chemistry, 150, 199-205. https://doi.org/10.1016/j.foodchem.2013.10.155
  16. Wang, Y., Lu, C., Xiao, Z., Wang, G., Kuan, S. S., & Rigsby, E. J. (1991). Determination of aluminum in foods by stabilized temperature platform graphite furnace atomic absorption spectrometry. Journal of Agricultural and Food Chemistry, 39(4), 724-726. https://doi.org/10.1021/jf00004a020

Cited by

  1. Risk Analysis of Arsenic in Rice Using by HPLC-ICP-MS vol.37, pp.4, 2018, https://doi.org/10.5338/KJEA.2018.37.4.35