Helicobacter pylori 감염 위상피세포에서 MicroRNA 발현 변화

MicroRNA Profile in the Helicobacter pylori-infected Gastric Epithelial Cells

  • 김창환 (가톨릭대학교 의과대학 부천성모병원 내과학교실) ;
  • 김성수 (가톨릭대학교 의과대학 의정부성모병원 내과학교실) ;
  • 김태호 (가톨릭대학교 의과대학 부천성모병원 내과학교실) ;
  • 정우철 (가톨릭대학교 의과대학 성빈센트병원 내과학교실) ;
  • 김재광 (가톨릭대학교 의과대학 부천성모병원 내과학교실)
  • Chang Whan Kim (Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea) ;
  • Sung Soo Kim (Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea) ;
  • Tae Ho Kim (Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea) ;
  • Woo Chul Chung (Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea) ;
  • Jae Kwang Kim (Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea)
  • 투고 : 2017.11.02
  • 심사 : 2017.12.03
  • 발행 : 2017.12.31

초록

위암 발병에 관여하는 Helicobacter pylori는 위상피세포내에서 많은 miRNA의 변화를 유도하여 발암과정에 역할을 할 것으로 추정하고 있다. 현재까지 H. pylori 감염 시 상피세포에서 miRNA 변화에 대해 명확히 밝혀져 있지 않다. 본 연구의 목적은 H. pylori에 감염된 위상피세포에서 miRNA의 발현 변화를 관찰하고자 하였다. H. pylori에 6시간 동안 감염시킨 AGS 위상피세포주와 AGS 세포주에 3개월 이상 장기간 H. pylori를 감염시켜 얻은 세포주(HS3C)를 대상으로 하였다. 대상 세포주로 부터 miRNA만을 분리한 후, custom microarray를 이용하여 발현 변화를 관찰하였다. 또한 microarray에서 유의한 증감이 관찰된 목표 유전자를 선별하여 real-time PCR을 이용하여 정량적 변화를 확인하였다. miRNA microarray 분석 결과를 토대로 변화가 관찰된 12개의 miRNA를 선별하였다. Real-time PCR 검사로 miRNA의 변화를 검정한 결과, miR-21, miR-221, miR-222은 6시간 동안 감염시킨 AGS 위상피세포주와 HS3C 세포주 모두에서 증가되어 있었다. miR-99b, miR-200b, miR-203b, miR-373은 6시간 동안 감염시킨 AGS 위상피세포주와 HS3C 세포주 모두에서 감소되어 있었다. miR-23a, miR-23b, miR-125b, miR-141, miR-155는 H. pylori에 6시간 동안 감염된 AGS 위상피세포주에서 감소되었으나, HS3C에서는 증가되어 있었다. H. pylori 감염 위상피세포주에서 miR-21, miR-99b, miR-125b, miR-200b, miR-203b, miR-221, miR-222, miR-373의 발현 변화는 위암의 발생기전에 관여할 것으로 추정되며, 각각의 기능과 역할의 규명에 대해서는 후속 연구가 필요하다.

Background: The expression of miRNAs in response to Helicobacter pylori infection has not been well explored. The aims of this study were to evaluate the H. pylori associated miRNAs in the gastric epithelial cells. Methods: We investigated gastric epithelial cell-line (HS3C) exposed H. pylori over 3 months and AGS cell-line (AGS) exposed H. pylori for 6 hour. After the extraction of miRNA from these cell-lines, microarray and real time PCR were performed to confirm the alteration of expression. Results: All 12 miRNAs chosen for real-time PCR are based on the result of microarray and their potential functions related to H. pylori infection. miR-21, miR-221, miR-222 were upregulated in the H. pylori infected AGS cell for 6 hours and HS3C cells. miR-99b, miR-200b, miR-203b and miR-373 were downregulated in the H. pylori infected AGS cell for 6 hours and HS3C cells. miR-23a, miR-23b, miR-125b, miR-141 and miR-155 were upregulated in HS3C cell line but not in H. pylori infected AGS cell for 6 hours. Conclusion: miR-21, miR-99b, miR-125b, miR-200b, miR-203b, miR-221, miR-222, and miR-373 are supposed to be related with oncogenesis of H. pylori infection. Further studies are needed for the evaluation of the function of these confirmed miRNAs.

키워드

참고문헌

  1. Moss SF, Blaser MJ. Mechanisms of disease: Inflammation and the origins of cancer. Nat Clin Pract Oncol 2005;2:90-97.
  2. Machado JC, Pharoah P, Sousa S, et al. Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology 2001;121:823-829.
  3. Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2002;2:28-37.
  4. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115:787-798.
  5. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
  6. Caldas C, Brenton JD. Sizing up miRNAs as cancer genes. Nat Med 2005;11:712-714.
  7. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005;122:6-7.
  8. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-838.
  9. Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008;10:202-210.
  10. Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 2008;88:1358-1366.
  11. Yang K, Handorean AM, Iczkowski KA. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol 2009;2:361-369.
  12. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005;309:1577-1581.
  13. Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science 2005;308:557-560.
  14. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 2005;102:5570-5575.
  15. Pfeffer S, Zavolan M, Grasser FA, et al. Identification of virus-encoded microRNAs. Science 2004;304:734-736.
  16. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005;435:682-686.
  17. Xiao B, Liu Z, Li BS, et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 2009;200:916-925.
  18. Eguchi H, Carpentier S, Kim SS, Moss SF. P27kip1 regulates the apoptotic response of gastric epithelial cells to Helicobacter pylori. Gut 2004;53:797-804.
  19. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297.
  20. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051-4060.
  21. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-385.
  22. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-419.
  23. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004;14:2162-2167.
  24. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231-235.
  25. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a Ran-GTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004;10:185-191.
  26. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004;303:95-98.
  27. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293:834-838.
  28. Macrae IJ, Zhou K, Li F, et al. Structural basis for double-stranded RNA processing by Dicer. Science 2006;311:195-198.
  29. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-811.
  30. Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005;122:553-563.
  31. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nat Immunol 2008;9:839-845.
  32. Lambeth LS, Yao Y, Smith LP, Zhao Y, Nair V. MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1. J Gen Virol 2009;90:1164-1171.
  33. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601.
  34. Wessler S, Backert S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori. Trends Microbiol 2008;16:397-405.
  35. Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008;13:496-506.
  36. Kaise M, Yamasaki T, Yonezawa J, Miwa J, Ohta Y, Tajiri H. CpG island hypermethylation of tumor-suppressor genes in H. pylori-infected non-neoplastic gastric mucosa is linked with gastric cancer risk. Helicobacter 2008;13:35-41.
  37. Lionetti M, Biasiolo M, Agnelli L, et al. Identification of microRNA expression patterns and definition of a microRNA/ mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 2009;114:e20-e26.
  38. Wu W, Lin Z, Zhuang Z, Liang X. Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 2009;18:50-55.
  39. Le MT, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009;23:862-876.