DOI QR코드

DOI QR Code

임진강대 남변부 트라이아스기 보장산조면암의 지구화학과 조구조적 의미

Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea

  • 황상구 (안동대학교 지구환경과학과) ;
  • 안웅산 (제주특별자치도 세계유산본부)
  • Hwang, Sang Koo (Department of Earth and Environmental Science, Andong National University) ;
  • Ahn, Ung San (World Heritage Office, Jeju Special Self-Governing Provincial Government)
  • 투고 : 2017.05.15
  • 심사 : 2017.06.16
  • 발행 : 2017.06.30

초록

이 연구는 임진강대 남변부에서 산출되는 보장산조면암에 대한 새로운 지구화학적 특징과 조구조 배경에 대해 논한다. 보장산조면암은 희토류 및 고장력 원소의 함량이 매우 풍부하며 거미도형에서 Nb의 이상치가 나타나지 않는 것이 특징인데, 이는 지각물질이 개입하는 호환경의 마그마 과정을 겪지 않았음을 암시한다. 이 조면암은 비유동적인 고장력 원소인 Nb-Y와 (Y+Nb)-Rb 상관도에 의하면 판내부 환경에서 생성된 것으로 판단된다. 또한 높은 Ga 함량은 전형적인 A-형 마그마의 특성을 잘 보여주고, Nb-Y-Ce과 Nb-Y-3Ga 삼각도에서 A1-형 영역에 속하며, Y-La-Nb 삼각도에서 판내부 대륙열곡에서 산출되는 알칼리암을 나타낸다. 이는 이들이 비조산성 대륙열곡 환경에서 맨틀근원물질로부터 나온 마그마의 분화작용으로 생성되었음을 의미한다. 이의 지화학적 특징은 임진강대에서 보장산조면암이 페름-트라이아스기 송림조산운동동안 주 충돌작용 다음에 확장성 환경에서 발달하는 대륙열곡에서 맨틀유래 마그마작용에 의해 생성된 사건을 가리킨다. 이러한 자료는 임진강대를 북중국 및 남중국 지괴 사이의 칠링-다비-술루대의 연장부로 생각할 수 있게 한다.

We investigates geochemical and tectonic characteristics for the Triassic Bojangsan trachyte in the southern margin of the Imjingang belt. The geochemical signatures of the thracyte are characterized by enrichments of REE and HFS, and show no Nb trough, suggesting that would not experience arc magmatic processes involving continental crustal materials. The trachyte reveals within-plate setting in tectonic discrimination diagrams using immobile HFS Nb and Y elements. And the trachyte shows typical signatures of A-type volcanic rocks with high Ga abundance and is classified as A1-type volcanic rocks rich in Nb. The geochemical signatures suggest that the trachyte was produced by the differentiation of mantle-derived magmatism at the continental rift in extensional setting subsequent to a major collision during the Permo-Triassic Songrim orogeny. The results provide robust evodence to consider the Imjingang belt as an extension of the the Qinling-Dabie-Sulu belt between the North and South China blocks.

키워드

참고문헌

  1. Barbarin, B., 1999, A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
  2. Bohrson, W.A. and Reid, M.R., 1997, Genesis of peralkaline volcanic rocks in an ocean island setting by crust melting and open-system processes: Socorro Island, Mexico. Journal of Petrology, 38, 1137-1166. https://doi.org/10.1093/petroj/38.9.1137
  3. Cabanis, B. and Lecolle, M. 1989. Le diagramme La/10Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale. C. R. Acad. Sci. Ser. II A Sci. Terre Planetes 309: 2023-2029.
  4. Chen, J.F., Xie, Z., Li, H.M., Zhang, X.D., Zhou, T.X., Park, Y.S., Ahn, K.S., Chen, D.G., and Zhang, X., 2003, U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal, 37, 35-46. https://doi.org/10.2343/geochemj.37.35
  5. Cho, D.-L., 2007, Chronostratigraphy of the Imjingang belt. In: Kee et al.(Eds.) Tectonic Correlation of Major Crustal Units and Construction of Geoscience of Northeast Asia, GP2007-004-2007(1), Institute of Geoscience and Mineral Resources, 63-78 (in Korean).
  6. Cho, D.-L., Kwon, S-T., Jeon, E.-Y., and Armstrong, R., 2001. SHRIMP U-Pb zircon geochronology of an amphibolite and a paragneiss from the Samgot unit, Yeoncheon Complex in the Imjingang belt, Korea: tectonic implication. Geological Socciety of Korea, Abstract, 56, p.89.
  7. Cho, D.-L., Lee, S.R., and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 105, 191-200. https://doi.org/10.1016/j.lithos.2008.03.007
  8. Cho, D.-R., Kwon, S.-T., Jeon, E.Y., and Armstrong, R., 2005, SHRIMP U-Pb zircon ages of metamorphic rocks from the Samgot unit, Yeoncheon complex in the Imjingang belt, Korea: Implications for the phanerozoic tectonics of East Asia. Abstract Program, 37, Geological Society of America, p.388.
  9. Cho, M., 2001. A continuation of Chinese ultrahigh-pressure belt in Korea: evidence from ion microprobe U-Pb zircon ages. Gondwana Research, 4, 708. https://doi.org/10.1016/S1342-937X(05)70505-0
  10. Cho, M. and Kim, H., 2005, Metamorphic evolution of the Ogcheon belt, Korea: a review and new age constraints. International Geology Review, 47, 41-57. https://doi.org/10.2747/0020-6814.47.1.41
  11. Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Pak, S.J., and Kim, S.W., 2009, Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc 18, 266-281.
  12. Chough, S.K., Kwon, S.T., Ree, J.-H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Review, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  13. Collins, W.J., Beams, S.D., White, A.J., and Chappell, B.W., 1982, Nature and origin of A-type granite with particular reference to Southeastern Australian. Contributions to Mineralogy and Petrology, 8, 189-200.
  14. Eby, G.N., 1990, The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26, 115-134. https://doi.org/10.1016/0024-4937(90)90043-Z
  15. Eby, G.N., 1992, Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20, 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  16. Ernst, W.G. and Liou, J.G., 1995, Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology, 23, 353-356. https://doi.org/10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
  17. Faure, M., Lin, W., Le Breton, N., 2001, Where is the North China-South China block boundary in eastern China? Geology, 29, 119-122. https://doi.org/10.1130/0091-7613(2001)029<0119:WITNCS>2.0.CO;2
  18. Fowler, M.B., Henney, P.J., Rogers, G., Watt, G.R., and Friend, C.R.L., 2001, Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. Journal of the Geological Society of London 158, 521-534. https://doi.org/10.1144/jgs.158.3.521
  19. Hwang, J.H. and Kihm, Y.H., 2007, Geological report of the Jipori Sheet. Korea Institute of Geoscience and Mineral Resources, 54p.
  20. Hwang, S.K., An, Y.M., and Yi, K., 2011, SHRIMP age datings and volcanism times of the igneous rocks in the Cheolwon Basin, Korea. Journal of Petrological Society of Korea, 20, 231-241 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2011.20.4.231
  21. Hwang, S.K., Kee, W.-S., and Yi, K., 2017, SHRIMP zircon dating and stratigraphic implications of the Bojangsan Trachyte in the Imjingang Belt, Korea. Journal of Petrological Society of Korea, 53, 423-432 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.3.423
  22. Kee, W.-S., Cho, D.-L., Kim, B.C., and Jin, K., 2005, Geological report of the Pocheon Sheet. Korea Institute of Geoscience and Mineral Resources, 66p.
  23. Kee, W.-S., Lim, S.-B., Kim, H., Hwang, S.K., Song, K.-Y., and Kihm, Y.-B., 2008, Geological report of the Yeoncheon Sheet. Korea Institute of Geoscience and Mineral Resources, 83p.
  24. Kim, J.N., Ree, J.-H., Kwon, S.T., Park, Y., Choi, S.-J., and Cheong, C.-S., 2000, The Kyeonggi shear zone of the central Korean peninsula: Late orogenic imprint of the North and South China collision. Journal of Geology, 108, 469-478. https://doi.org/10.1086/314412
  25. Kim, J., Yi, K., Jeong, Y.-J., and Cheong, C.-S., 2011a. Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research. doi:10.1016/j.gr.2010.12.005.
  26. Kim, S.W., Kwon, S., Koh, H.J., Yi, K., Jeong, Y.-J., and Santosh, M., 2011b, Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research, 20, 865-889. https://doi.org/10.1016/j.gr.2011.05.005
  27. Kim, S.W., Oh, C.H., Williams, I.S., Rubatto, D., Ryu, I.C., Rajeshi, V.J., Kim, C.-B., Guo, J., and Zhai, M., 2006, Phanerozoic high-pressure eclogites and intermediatepressure granulite facies metamorphism in the Gyeonggi massif, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  28. Kwon, S.-T. and Lee, J.-H., 1997, A note on the age of the Honam shear zone. Journal of the Geological Society of Korea, 33, 183-188 (in Korean with English abstract).
  29. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750. https://doi.org/10.1093/petrology/27.3.745
  30. Le Maitre, R.W., 1984, A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. American Journal of Earth Sciences, 31, 243-255. https://doi.org/10.1080/08120098408729295
  31. Lee, D.S., 1987, Geology of Korea. Kyohak-sa, Seoul, 514p.
  32. Lee, S.R., Cho, M., Yi, K.-W., and Stern, R., 2000, Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. J. Geol. 108, 729-738. https://doi.org/10.1086/317951
  33. Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B., and Kim, J.C., 2001, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research.
  34. Li, X.-H., Li, Z.X., Zhou, H., Liu, Y., and Pinny, P.D., 2002, U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcnaic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 113, 135-154. https://doi.org/10.1016/S0301-9268(01)00207-8
  35. Li, Z.X., 1994. Collision between the North and South China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 22, 739-742. https://doi.org/10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2
  36. Liegeois, J.-P., Navez, J., Hertogen, J., and Black, R., 1998, Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45, 1-28. https://doi.org/10.1016/S0024-4937(98)00023-1
  37. Oh, C.W., Kim, S.W., Choi, S.J., Zhai, M., Guo, J., and Sajeev, K., 2005, First finding of eclogites facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, 113, 226-232. https://doi.org/10.1086/427671
  38. Oh, C.W., Kim, S.W., and Williams, I,S., 2006, Spinel granulite in Odesan area, South Korea: tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575. https://doi.org/10.1016/j.lithos.2006.03.051
  39. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  40. Peccerillo, A., Barerio, M.R., Yirgu, G., Ayalew, D., Barbieri, M., and Wu, T.W., 2003, Relationship between mafic and peralkaline felsic magmatism in continental rift settigns: a petrological, geochemical and isotopic study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44, 2003-2032. https://doi.org/10.1093/petrology/egg068
  41. Peng, P., Zhai, M., Guo, J., Zhang, H., and Zhang, Y., 2008, Petrogenesis of Triassic postcollisional syenite plutons in the Sino-Korean craton: an example from North Korea. Geological Magazine 145, 637-647.
  42. Qian, Q., et al., 2003, Mesozoic high Ba-Sr granitoids from North China: geochemical characteristics and geological implications. Terra Nova 15, 272-278. https://doi.org/10.1046/j.1365-3121.2003.00491.x
  43. Ree, J.-H., Cho, M., Kwon, S.-T., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology, 24, 1071-1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  44. Ree, J.-H., Kwon, S.-H., Park, Y., Kwon, S.-T., and Park, S.-H., 2001, pretectonic and post-tectonic emplacements of the granitoids in the south central Okchon belt, South Korea: implications for the timing of strikeslip shearing. Tectonics, 20, 850-867. https://doi.org/10.1029/2000TC001267
  45. Seo, J., Choi, S.-G., and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research 18, 479-496. https://doi.org/10.1016/j.gr.2009.12.009
  46. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematic of oceonic basalt: implication for mantle composition and process. In: Saunders, A.D., Norry, M.J. (Eds), Magmatism in the Oceonic Basins. Special Publication, Geological Society of London, 313-346.
  47. Tchameni, R., Mezger, K., Nsifa, N.E., and Pouclet, A., 2001, Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos, 57, 23-42. https://doi.org/10.1016/S0024-4937(00)00072-4
  48. Turner, S., Sandiford, M., and Foden, J., 1992, Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology, 20, 931-934. https://doi.org/10.1130/0091-7613(1992)020<0931:SGACCO>2.3.CO;2
  49. Tura, T., Deniel, C., and Mazzuoli, R., 1998, Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift(MER): geochemical and isotopic(Sr Nd Pb) evidence. Chemical Geology, 155, 201-231.
  50. Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, Atype granites: geochemical characteristics, discrimination and petrogenisis. Contributions to Mineralogy and Petrology, 95, 405-419.
  51. Williams, I.S., Cho, D.L., and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos 107, 239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  52. Winchester, J.A. and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
  53. Wood, D.A., 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crust contamination of basaltic lavas of the British Tertiary volcanic provinces. Earth and Planetary Science Letters, 50, 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
  54. Wu, F.-Y., Sun, D.-Y., Li, H., Jahn, B.-M., and Wilde, S., 2002, A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical geology, 187, 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
  55. Yang, J.H., Chung, S.L., Wilde, S.A., Wu, F.Y., Chu, M.F., Lo, C.H., and Fan, H.R., 2005, Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214, 99-125. https://doi.org/10.1016/j.chemgeo.2004.08.053
  56. Yang, J.H., Wu, F.Y., Wilde, S.A., and Liu, X.M., 2007, Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liadong Peninsula, North China Craton. Chemical Geology, 242, 155-175. https://doi.org/10.1016/j.chemgeo.2007.03.007
  57. Yin, A. and Nie, S., 1993, An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics 12, 801-813. https://doi.org/10.1029/93TC00313
  58. Yu, K.M., Kwon, Y.I., and Chun, H.Y., 1992, Stratigraphy and mineral composition of sandstones from the Daedong Group, Yeoncheon area. Journal of Geological Society of Korea, 28, 152-166 (in Korean with English abstract).