DOI QR코드

DOI QR Code

A Review on Bifidobacteria for Human Health

비피도박테리아가 건강에 미치는 영향에 대한 고찰

  • 송민유 (농촌진흥청 국립축산과학원) ;
  • 박원서 (농촌진흥청 국립축산과학원) ;
  • 유자연 (농촌진흥청 국립축산과학원) ;
  • 함준상 (농촌진흥청 국립축산과학원)
  • Received : 2017.06.26
  • Accepted : 2017.06.27
  • Published : 2017.06.30

Abstract

The intestinal microbiota has increasingly been shown to have a vital role in various aspects of human health. Among the vast gut bacterial community, Bifidobacterium is a genus which dominates the intestine of healthy breast-fed infants whereas in adulthood the levels are lower but relatively stable. Evidence is increasingly accumulating which shows beneficial effects of supplementation with Bifidobacteria for the improvement of human health conditions ranging from protection against infection to various positive effects. However, Bifidobacterium has not been actively studied while consumption of probiotics has greatly been increased as functional foods in Korea. The aim of this article is to introduce various studies and excellent reviews on the role of Bifidobacteria for human health.

Keywords

References

  1. Akay, H. K., Bahar Tokman, H., Hatipoglu, N., Hatipoglu, H., Siraneci, R., Demirci, M., Borsa, B. A., Yuksel, P., Karakullukcu, A., Kangaba, A. A., Sirekbasan, S., Aka, S., Mamal Torun, M. and Kocazeybek, B. S. 2014. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: a prospective study of 0-3 years-old children in Turkey. Anaerobe 28:98-103. https://doi.org/10.1016/j.anaerobe.2014.05.006
  2. Arboleya, S., Binetti, A., Salazar, N., Fernandez, N., Solis, G., Hernandez- Barranco, A., Margolles, A., de Los Reyes-Gavilan, C. G. and Gueimonde, M. 2012. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 79: 763-772. https://doi.org/10.1111/j.1574-6941.2011.01261.x
  3. Arboleya, S., Sánchez, B., Milani, C., Duranti, S., Solís, G., Fernández, N., de los Reyes-Gavilan, C. G., Ventura, M., Margolles, A. and Gueimonde, M. 2015. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J. Pediatr. 166:538-544. https://doi.org/10.1016/j.jpeds.2014.09.041
  4. Arboleya, S., Watkins, C., Stanton, C. and Ross, R. P. 2016. Gut bifidobacteria populations in human health and aging. Frontiers in Microbiology 7:1-9.
  5. Barrett, E., Kerr, C., Murphy, K., O'Sullivan, O., Ryan, C. A., Dempsey, E. M., Murphy, B. P., O'Toole P. W., Cotter, P. D., Fitzgerald, G. F., Ross, R. P. and Stanton, C. 2013. The individual-specific and diverse nature of the preterm infant microbiota. Arch. Dis. Child. Fetal Neonatal Ed. 98:F334-F340. https://doi.org/10.1136/archdischild-2012-303035
  6. Bartosch, S., Fite, A., Macfarlane, G. T. and McMurdo, M. E. T. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70:3575-3581. https://doi.org/10.1128/AEM.70.6.3575-3581.2004
  7. Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P. A., Fahnestock, M., Moine, D., Berger, B., Huizinga, J. D. Kunze, W., McLean, P. G., Begonzelli, G. E., Collins, S. M. and Verdu, E. F. 2011. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23:1132-1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x
  8. Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C. and Brigidi, P. 2012. Ageing of the human metaorganism: the microbial counterpart. Age. 34:247-267. https://doi.org/10.1007/s11357-011-9217-5
  9. Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., Franceschi, C., Brigidi, P. and De Vos, W. 2010. Through ageing and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5:e10667. https://doi.org/10.1371/journal.pone.0010667
  10. Biavatti, B. and Mattarelli, P. 2006. "The family Bifidobacteriaceae", in The Prokaryotes, 3rd Edn, Vol. 3, eds S. Falkow, E. Rosenberg, K. H. Schleifir, E. Stackebrandt and M. Dworkin (NewYork, NY: Springer- VerlagGmbH), pp. 322-382.
  11. Chaplin, A. V., Brzhozovskii, A. G., Parfenova, T. V., Kafarskaia, L. I., Volodin, N. N., Shkoporov, A. N., Ilina, E. N. and Efimov, B. A. 2015. Species diversity of bifidobacteria in the intestinal microbiota studied using MALDI-TOF mass-spectrometry. Vestn. Ross. Akad. Med. Nauk 4:435-440.
  12. Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O'Connor, E. M., Cusack, S., Harris, H. M., Coakley, M., Lakshminarayanan, B., O'Sullivan, O., Fitzgerald, G. F., Deane, J., O'Connor, M., Harnedy, N., O'Connor, K., O'Mahony, D., van Sinderen, D., Wallace, M., Brennan L., Stanton, C., Marchesi, J. R., Fitzgerald, A. P., Shanahan, F., Hill, C., Ross, R. P. and O'Toole, P. W. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178-184. https://doi.org/10.1038/nature11319
  13. Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F. and Dinan, T. G. 2014. Minireview: gutmicrobiota: the neglected endocrineorgan. Mol. Endocrinol. 28:221-1238.
  14. Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M. and Sanz, Y. 2008a. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 8:232. https://doi.org/10.1186/1471-2180-8-232
  15. Collado, M. C., Isolauri, E., Laitinen, K. and Salminen, S. 2008b. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 88:894-899. https://doi.org/10.1093/ajcn/88.4.894
  16. Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. and Salminen, S. 2016. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6:23129. https://doi.org/10.1038/srep23129
  17. Cronin, M., Morrissey, D., Rajendran, S., ElMashad, S. M., van Sinderen, D., O'Sullivan, G. C. and Tangney, M. 2010. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol. Ther. 18:1397-1407. https://doi.org/10.1038/mt.2010.59
  18. Di Gioia, D., Aloisio, I., Mazzola, G. and Biavati, B. 2014. Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl. Microbiol. Biotechnol. 98:563-577. https://doi.org/10.1007/s00253-013-5405-9
  19. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N. and Knight, R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U.S.A. 107:11971-11975. https://doi.org/10.1073/pnas.1002601107
  20. Drago, L., Toscano, M., Rodighiero, V., De Vecchi, E. and Mogna, G. 2012. Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J. Clin. Gastroenterol. 46(Suppl.):S81-S84. https://doi.org/10.1097/MCG.0b013e3182693982
  21. Duytschaever, G., Huys, G., Bekaert, M., Boulanger, L., De Boeck, K. and Vandamme, P. 2013. Dysbiosis of Bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. J. Cyst. Fibros. 12:206-215. https://doi.org/10.1016/j.jcf.2012.10.003
  22. Faa, G., Gerosa, C., Fanni, D., Nemolato, S., van Eyken, P. and Fanos, V. 2013. Factors influencing the development of a personal tailored microbiota in the neonate, with particular emphasis on antibiotic therapy. J. Matern. Fetal Neonatal Med. 26(Suppl. 2):35-43. https://doi.org/10.3109/14767058.2013.829700
  23. Favier, C. F., Vaughan, E. E., De Vos, W. M. and Akkermans, A. D. 2002. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68:219-226. https://doi.org/10.1128/AEM.68.1.219-226.2002
  24. Gao, X., Jia, R., Xie, L., Kuang, L., Feng, L. and Wan, C. 2015. Obesity in school-aged children and its correlation with gut E. coli and Bifidobacteria: A casecontrol study. BMC Pediatr. 15:64. https://doi.org/10.1186/s12887-015-0384-x
  25. Garrido, D., Dallas, D. C. and Mills, D. A. 2013. Consumption of human milk glycoconjugates by infantassociated bifidobacteria: Mechanisms and implications. Microbiology 159(Pt 4):649-664. https://doi.org/10.1099/mic.0.064113-0
  26. Gavini, F., Cayuela, C., Antoine, J. -M., Lecoq, C., Lefebvre, B., Membre, J. - M., et al. 2001. Differences in the distribution of bifidobacterial and enterobacterial species in human faecal microflora of three different(children, adults, elderly) age groups. Microb. Ecol. Health Dis. 13:40-45. https://doi.org/10.1080/089106001750071690
  27. Gronlund, M. M., Gueimonde, M., Laitinen, K., Kociubinski, G., Gronroos, T., Salminen, S. and Isolauri, E. 2007. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin. Exp. Allergy 37:1764-1772. https://doi.org/10.1111/j.1365-2222.2007.02849.x
  28. Grzeskowiak, L., Sales Teixeira, T. F., Bigonha, S. M., Lobo, G., Salminen, S. and Ferreira, C. L. 2015. Gut Bifidobacterium microbiota in one-month-old Brazilian newborns. Anaerobe. 35(Pt B):54-58.
  29. Guaraldi, F. and Salvatori, G. 2012. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front. Cell. Infect. Microbiol. 2:94.
  30. Guardamagna, O., Amaretti, A., Puddu, P. E., Raimondi, S., Abello, F., Cagliero, P. and Rossi, M. 2014. Bifidobacteria supplementation: effects on plasma lipid profiles in dyslipidemic children. Nutrition. 30, 831-836. https://doi.org/10.1016/j.nut.2014.01.014
  31. Guarner, F. and Malagelada, J. R. 2003. Gut flora in health and disease. Lancet. 361:512-519. https://doi.org/10.1016/S0140-6736(03)12489-0
  32. Gueimonde, M., Debor, L., Tolkko, S., Jokisalo, E. and Salminen, S. 2007. Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes. J. Appl. Microbiol. 102:1116-1122.
  33. Gueimonde, M., Ouwehand, A., Pitkala, K., Strandberg, T., Finne-Soveri, H. and Salminen, S. 2010. Fecal Bifidobacterium levels in elderly nursing home patients- Are levels as expected? Biosci. Microflora. 29:111-113. https://doi.org/10.12938/bifidus.29.111
  34. Haarman, M. and Knol, J. 2005. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71:2318-2324. https://doi.org/10.1128/AEM.71.5.2318-2324.2005
  35. He, F., Ouwehand, A. C., Isolauri, E., Hosoda, M., Benno, Y. and Salminen, S. 2001. Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr. Microbiol. 43:351-354. https://doi.org/10.1007/s002840010315
  36. Hevia, A., Milani, C., Lopez, P., Donado, C. D., Cuervo, A., Gonzalez, S., Suarez, A., Turroni, F., Gueimonde, M., Ventura, M., Sanchez, B. and Margolles, A. 2016. Allergic patients with long-term asthma display low levels of Bifidobacterium adolescentis. PLoS ONE. 11:e0147809. https://doi.org/10.1371/journal.pone.0147809
  37. HMP. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207-214. https://doi.org/10.1038/nature11234
  38. Hopkins, M., Sharp, R. and Macfarlane, G. 2001. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance and community cellular fatty acid profiles. Gut. 48:198-205. https://doi.org/10.1136/gut.48.2.198
  39. Hopkins, M. J. and Macfarlane, G. T. 2002. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J. Med. Microbiol. 51:448-454. https://doi.org/10.1099/0022-1317-51-5-448
  40. Jeffery, I. B., O'Toole, P. W., Ohman, L., Claesson, M. J., Deane, J., Quigley, E. M. and Simren, M. 2012. An irritable bowel syndrome subtype defined by speciesspecific alterations in faecal microbiota. Gut. 61:997-1006. https://doi.org/10.1136/gutjnl-2011-301501
  41. Kalliomaki, M., Collado, M. C., Salminen, S. and Isolauri, E. 2008. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87:534-538. https://doi.org/10.1093/ajcn/87.3.534
  42. Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C. J., Fagerberg, B., Nielsen, J. and Backhed, F. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 498:99-103. https://doi.org/10.1038/nature12198
  43. Kerckhoffs, A. P., Samsom, M., vander Rest, M. E., de Vogel, J., Knol, J., Ben-Amor, K. and Akkermans, L. M. A. 2009. Lower Bifidobacteria counts in both duodenal mucosa- associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol. 15:2887-2892. https://doi.org/10.3748/wjg.15.2887
  44. Klaassens, E. S., Boesten, R. J., Haarman, M., Knol, J., Schuren, F. H., Vaughan, E. E. and de Vos, W. M. 2009. Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl. Environ. Microbiol. 7:2668-2676.
  45. Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., Angenent, L. T. and Ley, R. E. 2011. Succession of microbial consortiain the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1):4578-4585. https://doi.org/10.1073/pnas.1000081107
  46. Lagier, J. C., Hugon, P., Khelaifia, S., Fournier, P. E., LaScola, B. and Raoult, D. 2015. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 28:237-264. https://doi.org/10.1128/CMR.00014-14
  47. Lewis, Z. T., Totten, S. M., Smilowitz, J. T., Popovic, M., Parker, E., Lemay, D. G., et al. 2015. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13. https://doi.org/10.1186/s40168-015-0071-z
  48. Lyra, A., Rinttila, T., Nikkila, J., Krogius-Kurikka, L., Kajander, K., Malinen, Matto, J., Makela, L. and Palva, A. 2009. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J. Gastroenterol. 15:5936-5945. https://doi.org/10.3748/wjg.15.5936
  49. Makino, H., Kushiro, A., Ishikawa, E., Kubota, H., Gawad, A., Sakai, T., Oishi, K., Martin, R., Ben-Amor, K., Knol, J. and Tanaks, R. 2013. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS ONE 8:e78331. https://doi.org/10.1371/journal.pone.0078331
  50. Malaguarnera, G., Leggio, F., Vacante, M., Motta, M., Giordano, M., Bondi, A., Basile, F., Mastrojeni, S., Mistretta, A., Malaguarnera, M., Toscano, M. A. and Salmeri, M. 2012. Probiotics in the gastrointestinal diseases of the elderly. J. Nutr. Health Aging. 16:402-410. https://doi.org/10.1007/s12603-011-0357-1
  51. Matsuki, T., Watanabe, K., Tanaka, R., Fukuda, M. and Oyaizu, H. 1999. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl. Environ. Microbiol. 65:4506-4512.
  52. Mayorga Reyes, L., Gonzalez Vazquez, R., Cruz Arroyo, S. M., Melendez Avalos, A., Reyes Castillo, P. A., Chavaro Perez, D. A., Ramos Terrones, I., Ramos Ibanez, N., Rodriguez Magallanes, M. M., Langella, P., Brmudez Humaran, L. and Azaola Espinosa, A. 2016. Correlation between diet and gut bacteria in a population of young adults. Int. J. Food Sci. Nutr. 67:470-478. https://doi.org/10.3109/09637486.2016.1162770
  53. Mevissen-Verhage, E. A., Marcelis, J. H., de Vos, M. N., Harmsen-van Amerongen, W. C. and Verhoef, J. 1987. Bifidobacterium, Bacteroides and Clostridium spp. in fecal samples from breast-fed and bottle-fed infants with and without iron supplement. J. Clin. Microbiol. 25:285-289.
  54. Mihajlovski, A., Dore, J., Levenez, F., Alric, M. and Brugere, J. -F. 2010. Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an ageassociated increase of the diversity. Environ. Microbiol. Rep. 2:272-280. https://doi.org/10.1111/j.1758-2229.2009.00116.x
  55. Mikami, K., Takahashi, H., Kimura, M., Isozaki, M., Izuchi, K., Shibata, R., Sudo, N, Matsumoto H. and Koga, Y. 2009. Influence of maternal bifidobacteria on the establishment of bifidobacteria colonizing the gut in infants. Pediatr. Res. 65:669-674. https://doi.org/10.1203/PDR.0b013e31819ed7a8
  56. Million, M., Angelakis, E., Maraninchi, M., Henry, M., Giorgi, R., Valero, R., Vialettes, B. and Raoult, D. 2013. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. (Lond.) 37:1460-1466. https://doi.org/10.1038/ijo.2013.20
  57. Mitsuoka, T. 1992. Intestinal flora and aging. Nutr. Rev. 50:438-446.
  58. Mitsuoka, T., Hayakawa, K. and Kimura, N. 1974. [The faecal flora of man. II. The composition of Bifidobacterium flora of different age groups]. Zentralbl. Bakteriol. Orig. A. 226:469-478.
  59. Murphy, K., O'Shea, C. A., Ryan, C. A., Dempsey, E. M., O'Toole, P. W., Stanton, C. and Ross, R. P. 2015. The gut microbiota composition indichorionic triplet sets suggests a role for host genetic factors. PLoS ONE 10:e0122561. https://doi.org/10.1371/journal.pone.0122561
  60. Murri, M., Leiva, I., Gomez-Zumaquero, J. M., Tinahones, F. J., Cardona, F., Soriguer, F. and Queipo- Ortuno, M. I. 2013. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 11:46. https://doi.org/10.1186/1741-7015-11-46
  61. Musilova, S., Rada, V., Vlkova, E. and Bunesova, V. 2014. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef. Microbes 5:273-283. https://doi.org/10.3920/BM2013.0080
  62. Nakamura, T., Sasaki, T., Fujimori, M., Yazawa, K., Kano, Y., Amano, J. and Taniguchi, S. 2002. Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci. Biotechnol. Biochem. 66:2362-2366. https://doi.org/10.1271/bbb.66.2362
  63. Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J. Z. et al. 2016. Age-related changes in gut microbiota composition from newborn to centenarian: across-sectionalstudy. BMC Microbiol. 16:90. doi: 10.1186/s12866-016-0708-5
  64. O'Sullivan, O., Coakley, M., Lakshminarayanan, B., Conde, S., Claesson, M. J., Cusack, S., Fitzgerald, A. P., O'Toole, P. W., Stanton, C., Ross, R. P. and ELDERMET Consortium. 2013. Alterations in intestinal microbiota of elderly Irish subjects post-antibiotic therapy. J. Antimicrob. Chemother. 68:214-221. https://doi.org/10.1093/jac/dks348
  65. Palma, G. D., Capilla, A., Nova, E., Castillejo, G., Varea, V., Pozo, T., Garrote, J. A., Polanco, I., Lopez, A., Ribes- Koninckx, C., Marcos, A., Garcia-Novo, M. D., Calvo, C., Ortigosa, L., Pena-Quintana, L., Palau, F. and Sanz, Y. 2012. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS ONE 7:e30791. https://doi.org/10.1371/journal.pone.0030791
  66. Penders, J., Thijs, C., Vink, C., Stelma, F. F., Snijders, B., Kummeling, I., van den Brandt, P. A. and Stobberingh, E. E. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 118:511-521. https://doi.org/10.1542/peds.2005-2824
  67. Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F. and Matuchansky, C. 2005. Review article: bifidobacteria as probiotic agents-physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22: 495-512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
  68. Putignani, L., Del Chierico, F., Petrucca, A., Vernocchi, P. and Dallapiccola, B. 2014. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr. Res. 76:2-10. https://doi.org/10.1038/pr.2014.49
  69. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pefersen, O., Parkhill, J., Weissenbach, J., MetaHIT Consortium, Bork, P., Ehrlich, S. D. and Wang, J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65. https://doi.org/10.1038/nature08821
  70. Rajilic-Stojanovic, M., Heilig, H. G., Molenaar, D., Kajander, K., Surakka, A., Smidt, H. and de Vos, W. M. 2009. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ. Microbiol. 11:1736-1751. https://doi.org/10.1111/j.1462-2920.2009.01900.x
  71. Roger, L. C., Costabile, A., Holland, D. T., Hoyles, L. and McCartney, A. L. 2010. Examination of faecal Bifidobacterium populations in breast-and formulafed infants during the first 18 months of life. Microbiology 156:3329-3341. https://doi.org/10.1099/mic.0.043224-0
  72. Rondanelli, M., Giacosa, A., Faliva, M. A., Perna, S., Allieri, F. and Castellazzi, A. M. 2015. Review on microbiota and effectiveness of probiotics use in older. World J. Clin. Cases 3:156-162. https://doi.org/10.12998/wjcc.v3.i2.156
  73. Salazar, N., Lopez, P., Valdes, L., Margolles, A., Suarez, A., Patterson, A. M., Cuervo, A., de los Reyes-Gavilan, C. G., Ruas-Madiedo, P., Gonzalez, S. and Gueimonde, M. 2013. Microbial targets for the development of functional foods accordingly with nutritional and immune parameters altered in the elderly. J. Am. Coll. Nutr. 32:399-406. https://doi.org/10.1080/07315724.2013.827047
  74. Santacruz, A., Collado, M. C., Garcia-Valdes, L., Segura, M. T., Martin-Lagos, J. A., Anjos, T., Marti-Romero, M., Lopez, R. M., Florido, J., Campoy, C. and Sanz, Y. 2010. Gut microbiota composition is associated with body weight, weightgain and biochemical parameters in pregnant women. Br. J. Nutr. 104:83-92. https://doi.org/10.1017/S0007114510000176
  75. Savignac, H. M., Kiely, B., Dinan, T. G. and Cryan, J. F. 2014. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 26:1615-1627. https://doi.org/10.1111/nmo.12427
  76. Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whiteheadf, T. R. et al. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105:18964-18969. https://doi.org/10.1073/pnas.0809584105
  77. Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino- Michaels, K., Earley, Z. M., Benyamin, F. W., Lei, Y. M., Jabri, B., Alegre, M. L., Chang, E. B. and Gajewski, T. F. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084-1089. https://doi.org/10.1126/science.aac4255
  78. Stsepetova, J., Sepp, E., Julge, K., Vaughan, E., Mikelsaar, M. and deVos, W. M. 2007. Molecularly assessed shifts of Bifidobacterium ssp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunol. Med. Microbiol. 51:260-269. https://doi.org/10.1111/j.1574-695X.2007.00306.x
  79. Taverniti, V. and Guglielmetti, S. 2014. Methodological issues in the study of intestinal microbiota in irritable bowel syndrome. World J. Gastroenterol. 20:8821-8836.
  80. Tojo, R., Suarez, A., Clemente, M. G., delos Reyes- Gavilan, C. G., Margolles, A., Gueimonde, M. and Ruas- Madiedo, P. 2014. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20:15163-15176. https://doi.org/10.3748/wjg.v20.i41.15163
  81. Turroni, F., Peano, C., Pass, D. A., Foroni, E., Severgnini, M., Claesson, M. J., Kerr, C., Hourihane, J., Murray, D., Fuligni, F., Gueimonde, M., Margolles, A., De Bellis, G., O'Toole, P. W., van Sinderen, D., Marchesi, J. R. and Ventura, M. 2012. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE 7:e36957. https://doi.org/10.1371/journal.pone.0036957
  82. Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, D. A., Affourtit, J. P., Egholm, M., Henrissat, B., Heath, A. C., Knight, R. and Gordon, J. I. 2009. A core gut microbiome in obese and lean twins. Nature 457:480-484. https://doi.org/10.1038/nature07540
  83. Underwood, M. A., German, J. B., Lebrilla, C. B. and Mills, D. A. 2015. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr. Res. 77:229-235. https://doi.org/10.1038/pr.2014.156
  84. van Tongeren, S. P., Slaets, J. P., Harmsen, H. J. and Welling, G. W. 2005. Fecal microbiota composition and frailty. Appl. Environ. Microbiol. 71:6438-6442. https://doi.org/10.1128/AEM.71.10.6438-6442.2005
  85. Voreades, N., Kozil, A. and Weir, T. 2014. Diet and the development of the human intestinal microbiome. Front. Microbiol. 5:494.
  86. Wang, F., Huang, G., Cai, D., Li, D., Liang, X., Yu, T. Shen, P., Su, H., Liu, J., Gu, H., Zhao, M. and Li, Q. 2015. Qualitative and semiquantitative analysis of fecal Bifidobacterium species in centenarians living in Bama, Guangxi, China. Curr. Microbiol. 71:143-149. https://doi.org/10.1007/s00284-015-0804-z
  87. Woodmansey, E. J. 2007. Intestinal bacteria and ageing. J. Appl. Microbiol. 102:1178-1186. https://doi.org/10.1111/j.1365-2672.2007.03400.x
  88. Woodmansey, E. J., McMurdo, M. E., Macfarlane, G. T. and Macfarlane, S. 2004. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotictreated elderly subjects. Appl. Environ. Microbiol. 70:6113-6122. https://doi.org/10.1128/AEM.70.10.6113-6122.2004
  89. Wu, G. D. and Lewis, J. D. 2013. Analysis of the human gut microbiome and association with disease. Clin. Gastroenterol. Hepatol. 11:774-777. https://doi.org/10.1016/j.cgh.2013.03.038
  90. Wu, X., Ma, C., Han, L., Nawaz, M., Gao, F., Zhang, X., Yu, P., Zhao, C., Li, L., Zhou, A., Wang, J., Moore, J. E., Millar, B. C. and Xu, J. 2010. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 61:69-78. https://doi.org/10.1007/s00284-010-9582-9
  91. Xu, M., Wang, B., Fu, Y., Chen, Y., Yang, F., Lu, H., Chen, Y., Xu, J. and Li, L. 2012. Changes of fecal Bifidobacterium species in adult patients with hepatitis B virus-induced chronic liver disease. Microb. Ecol. 63:304-313. https://doi.org/10.1007/s00248-011-9925-5
  92. Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, R. and Gordon, J. I. 2012. Human gut microbiome viewed across age and geography. Nature. 486:222-227. https://doi.org/10.1038/nature11053
  93. Zhao, L., Qiao, X., Zhu, J., Zhang, X., Jiang, J., Hao, Y. and Ren, F. 2011. Correlations of fecal bacterial communities with age and living region for the elderly living in Bama, Guangxi, China. J. Microbiol. 49:186-192. https://doi.org/10.1007/s12275-011-0405-x