References
- den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Sci. Technol. 22: 689-697. https://doi.org/10.1016/j.tifs.2011.07.005
- Su, S. and Wink, M. (2015) Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 117: 340-350. https://doi.org/10.1016/j.phytochem.2015.06.021
- Feng, S., Cheng, H., Xu, Z., Shen, S., Yuan, M., Liu, J. and Ding, C. (2015) Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans. Int. J. Biol. Macromol. 81: 188-194. https://doi.org/10.1016/j.ijbiomac.2015.07.057
- Sohal, R. S., Agarwal, A., Agarwal, S. and Orr, W. C. (1995) Simultaneous overexpression of copper-and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270: 15671-15674. https://doi.org/10.1074/jbc.270.26.15671
- Wei, Y. H. and Lee, H. C. (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. (Maywood) 227: 671-682. https://doi.org/10.1177/153537020222700901
- Bouayed, J. and Bohn, T. (2010) Exogenous antioxidants-Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell Longev. 3: 228-237. https://doi.org/10.4161/oxim.3.4.12858
- Branen, A. L. (1975) Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63. https://doi.org/10.1007/BF02901825
- Shin, T. S., Kang, H. S., Kim, S. K., Lee, K. W. and Cho, B. W. (1999) Effect of natural and synthetic antioxidants on pH, POV, fatty acids composition and overall acceptability of cooked ground pork. J. Agri. Tech. & Dev. Inst. 3: 1-9.
- Lee, E. B., Kim, J. H., Yang, J. H., Kim, Y.-S., Jun, H.-I., Ki, B., Lee, S.-H., Kim, Y.-S., Han, S. and Kim, D. K. (2015) Antioxidant and longevity properties of the root of Allium hookeri in Caenorhabditis elegans. Kor. J. Pharmacogn. 46: 234-242.
- Jun, H.-I., Jang, H., Ahn, D., Kim, D. K., Yang, J. H., Yun, B.-S. and Kim, Y.-S. (2015) Isolation and characterization of phenolic compound from Allium hookeri root for potential use as antioxidant in foods. Food Sci. Biotechnol. 24: 2031-2034. https://doi.org/10.1007/s10068-015-0269-7
- Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
- Thuong, P. T, Kang, H. J., Na, M., Jin, W., Youn, U. J., Seong, Y. H., Song, K. S., Min, B. S. and Bae, K. (2007) Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438. https://doi.org/10.1016/j.phytochem.2007.05.031
- Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
- Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
- Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
- Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
- Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
- Bae, D. Y. and Bae, G. C. (2012) The anti-inflammatory effects of ethanol extract of Allium hookeri cultivated in South Korea. Kor. J. Herbology 27: 55-61.
- Kim, N. S., Choi, B. K., Lee, S. H., Jang, H. H., Kim, J. B., Kim, H. R., Kim, D. K., Kim, Y. S., Yang, J. H., Kim, H. J. and Lee, S. H. (2015) Effect of Allium hookeri on glucose metabolism in type II diabetic mice. Kor. J. Pharmacogn. 46: 78-83.
- Won, J. Y., Yoo, Y. C., Kang, E. J., Yang, H., Kim, G. H., Seong, B. J., Kim, S. I., Han, S. I., Han, S. H., Lee, S. S. and Lee, K. S. (2013) Chemical components, DPPH radical scavenging activity and inhibitory effects on nitric oxide production in Allium hookeri cultivated under open field and greenhouse conditions. J. Korean Soc. Food Sci. Nutr. 42: 1351-1356. https://doi.org/10.3746/jkfn.2013.42.9.1351
- Saran, M. and Bors, W. (1990) Radical reaction in vivo-an overview. Radiat. Environ. Biophys. 29: 249-262. https://doi.org/10.1007/BF01210406
- Sun, Y. (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med. 8: 583-599. https://doi.org/10.1016/0891-5849(90)90156-D
- Bokov, A., Chaudhuri, A. and Richardson, A. (2004) The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125: 811-826. https://doi.org/10.1016/j.mad.2004.07.009
- Kim, J. W., Seo, S. J., Hong, C. K. and Ro, B. I. (1994) Study on superoxide dismutase activity in psoriatic skin. Kor. J. Dermatol. 32: 860-865.
- Hwang, J.-S., Lee, B. H., An, X., Jenog, H. r., Kim, Y.-E., Lee, I., Lee, H. and Kim, D.-O (2015) Total phenolics , total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots Allium hookeri. Korean J. Food Sci. Technol. 47: 261-266. https://doi.org/10.9721/KJFST.2015.47.2.261