Anti-oxidative Effects of Allium hookeri Leaves in Caenorhabditis elegans

삼채 잎의 예쁜꼬마선충 내의 항산화 효과

  • Ki, Byeolhui (Department of Food Science and Technology, Chonbuk National University) ;
  • Lee, Eun Byeol (Functional Food & Nutrition Division, Department of Agro-food Resources, Rural Development Administration) ;
  • Kim, Jun Hyeong (College of Pharmacy, Woosuk University) ;
  • Yang, Jae Heon (Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kim, Dae Keun (College of Pharmacy, Woosuk University) ;
  • Kim, Young-Soo (Department of Food Science and Technology, Chonbuk National University)
  • 기별희 (전북대학교 식품공학과) ;
  • 이은별 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김준형 (우석대학교 약학대학) ;
  • 양재헌 (전북대학교 헬스케어기술개발사업단) ;
  • 김대근 (우석대학교 약학대학) ;
  • 김영수 (전북대학교 식품공학과)
  • Received : 2017.06.10
  • Accepted : 2017.06.16
  • Published : 2017.06.30

Abstract

As an ongoing study about Allium hookeri (Liliaceae), this study was performed to evaluate the anti-oxidative effect of the leaves of this plant. Ethanol extract of A. hookeri leaves was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. The ethyl acetate soluble fraction showed the most potent DPPH radical scavenging and superoxide quenching activities among those fractions. To prove antioxidant activity of ethyl acetate fraction of A. hookeri leaves, we checked the activities of superoxide dismutase (SOD) and catalase, and intracellular ROS level and oxidative stress tolerance in Caenorhabditis elegans. In addition, to verify if increased stress tolerance of C. elegans by treating of ethyl acetate fraction was due to regulation of stress-response gene, we checked SOD-3 expression using transgenic strain. As a consequence, the ethyl acetate fraction increased SOD and catalase activity of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity.

Keywords

References

  1. den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Sci. Technol. 22: 689-697. https://doi.org/10.1016/j.tifs.2011.07.005
  2. Su, S. and Wink, M. (2015) Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 117: 340-350. https://doi.org/10.1016/j.phytochem.2015.06.021
  3. Feng, S., Cheng, H., Xu, Z., Shen, S., Yuan, M., Liu, J. and Ding, C. (2015) Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans. Int. J. Biol. Macromol. 81: 188-194. https://doi.org/10.1016/j.ijbiomac.2015.07.057
  4. Sohal, R. S., Agarwal, A., Agarwal, S. and Orr, W. C. (1995) Simultaneous overexpression of copper-and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270: 15671-15674. https://doi.org/10.1074/jbc.270.26.15671
  5. Wei, Y. H. and Lee, H. C. (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. (Maywood) 227: 671-682. https://doi.org/10.1177/153537020222700901
  6. Bouayed, J. and Bohn, T. (2010) Exogenous antioxidants-Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell Longev. 3: 228-237. https://doi.org/10.4161/oxim.3.4.12858
  7. Branen, A. L. (1975) Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63. https://doi.org/10.1007/BF02901825
  8. Shin, T. S., Kang, H. S., Kim, S. K., Lee, K. W. and Cho, B. W. (1999) Effect of natural and synthetic antioxidants on pH, POV, fatty acids composition and overall acceptability of cooked ground pork. J. Agri. Tech. & Dev. Inst. 3: 1-9.
  9. Lee, E. B., Kim, J. H., Yang, J. H., Kim, Y.-S., Jun, H.-I., Ki, B., Lee, S.-H., Kim, Y.-S., Han, S. and Kim, D. K. (2015) Antioxidant and longevity properties of the root of Allium hookeri in Caenorhabditis elegans. Kor. J. Pharmacogn. 46: 234-242.
  10. Jun, H.-I., Jang, H., Ahn, D., Kim, D. K., Yang, J. H., Yun, B.-S. and Kim, Y.-S. (2015) Isolation and characterization of phenolic compound from Allium hookeri root for potential use as antioxidant in foods. Food Sci. Biotechnol. 24: 2031-2034. https://doi.org/10.1007/s10068-015-0269-7
  11. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  12. Thuong, P. T, Kang, H. J., Na, M., Jin, W., Youn, U. J., Seong, Y. H., Song, K. S., Min, B. S. and Bae, K. (2007) Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438. https://doi.org/10.1016/j.phytochem.2007.05.031
  13. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  14. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  15. Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
  16. Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
  17. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  18. Bae, D. Y. and Bae, G. C. (2012) The anti-inflammatory effects of ethanol extract of Allium hookeri cultivated in South Korea. Kor. J. Herbology 27: 55-61.
  19. Kim, N. S., Choi, B. K., Lee, S. H., Jang, H. H., Kim, J. B., Kim, H. R., Kim, D. K., Kim, Y. S., Yang, J. H., Kim, H. J. and Lee, S. H. (2015) Effect of Allium hookeri on glucose metabolism in type II diabetic mice. Kor. J. Pharmacogn. 46: 78-83.
  20. Won, J. Y., Yoo, Y. C., Kang, E. J., Yang, H., Kim, G. H., Seong, B. J., Kim, S. I., Han, S. I., Han, S. H., Lee, S. S. and Lee, K. S. (2013) Chemical components, DPPH radical scavenging activity and inhibitory effects on nitric oxide production in Allium hookeri cultivated under open field and greenhouse conditions. J. Korean Soc. Food Sci. Nutr. 42: 1351-1356. https://doi.org/10.3746/jkfn.2013.42.9.1351
  21. Saran, M. and Bors, W. (1990) Radical reaction in vivo-an overview. Radiat. Environ. Biophys. 29: 249-262. https://doi.org/10.1007/BF01210406
  22. Sun, Y. (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med. 8: 583-599. https://doi.org/10.1016/0891-5849(90)90156-D
  23. Bokov, A., Chaudhuri, A. and Richardson, A. (2004) The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125: 811-826. https://doi.org/10.1016/j.mad.2004.07.009
  24. Kim, J. W., Seo, S. J., Hong, C. K. and Ro, B. I. (1994) Study on superoxide dismutase activity in psoriatic skin. Kor. J. Dermatol. 32: 860-865.
  25. Hwang, J.-S., Lee, B. H., An, X., Jenog, H. r., Kim, Y.-E., Lee, I., Lee, H. and Kim, D.-O (2015) Total phenolics , total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots Allium hookeri. Korean J. Food Sci. Technol. 47: 261-266. https://doi.org/10.9721/KJFST.2015.47.2.261