References
- Ajayan, P.O., Stephan, C.C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Sci. 265(5176), 1212-1214. https://doi.org/10.1126/science.265.5176.1212
- Anandrao, K.S., Gupta, R., Ramchandran, P. and Rao, G.V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- Ashrafi, B. and Hubert, P. (2006), "Modeling the elastic properties of carbon nanotube array/polymer composites", Compos. Sci. Technol., 66(3), 387-396. https://doi.org/10.1016/j.compscitech.2005.07.020
- Barzoki, A.A.M., Loghman, A. and Arani, A.G. (2015), "Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium", Struct. Eng. Mech., 53(3), 497-517. https://doi.org/10.12989/sem.2015.53.3.497
- Bhangale, R.K. and Ganesan, N. (2006), "Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core", J. Sound Vibr., 295(1-2), 294-316. https://doi.org/10.1016/j.jsv.2006.01.026
- Bidgoli, M.R., Karimi, M.S. and Arani, A.G. (2015), "Viscous fluid induced vibration and instability of FGCNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., 19(3), 713-733. https://doi.org/10.12989/scs.2015.19.3.713
- Bonnet, P., Sireude, D., Garnier, B. and Chauvet, O. (2007), "Thermal properties and percolation in carbon nanotube-polymer composites", Appl. Phys. Lett., 91(20), 201910-201910-201913.
- Ebrahimi, F. and Rastgoo, A. (2008a) "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct. 17(1), 015044. https://doi.org/10.1088/0964-1726/17/1/015044
- Ebrahimi, F. and Rastgoo, A. (2008b), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin-Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
- Ebrahimi, F. and Rastgoo, A. (2008c), "Free vibration analysis of smart FGM plates", J. Mech. Syst. Sci. Eng., 2(2), 94-99.
- Ebrahimi, F., Rastgoo, A. and Kargarnovin, M.H. (2008), "Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers", J. Mech. Sci. Technol., 22(6), 1058-1072. https://doi.org/10.1007/s12206-008-0303-2
- Ebrahimi F., Rastgoo, A. and Atai, A.A. (2009a), "Theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech.-A/Sol., 28(5), 962-997. https://doi.org/10.1016/j.euromechsol.2008.12.008
- Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009b), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol., 23(8), 2107-2124. https://doi.org/10.1007/s12206-009-0358-8
- Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2016a), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded euler beams with porosities", Meccan., 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
- Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronaut., 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
- Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
- Ebrahimi, F. and Salari, E (2015a), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
- Ebrahimi, F. and Salari, E. (2015b), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut., 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
- Ebrahimi, F. and Salari, E. (2015c), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B, 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Ebrahimi, F. and Salari, E. (2015d), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105(2), 151-181.
- Ebrahimi, F. and Salari, E. (2015e), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
- Ebrahimi, F. and Salari, E. (2015f), "Thermo-mechanical vibration analysis of nonlocal temperaturedependent FG nanobeams with various boundary conditions", Compos. B, 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
- Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016c), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccan., 51(4), 951-977. https://doi.org/10.1007/s11012-015-0248-3
- Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
- Ebrahimi, F. and Barati, M.R. (2016b), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
- Ebrahimi, F. and Barati, M.R. (2016c), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", J. Smart Nano Mater., 1-25.
- Ebrahimi, F. and Barati, M.R. (2016d), "An exact solution for buckling analysis of embedded piezoelectromagnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
- Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
- Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
- Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
- Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates", Appl. Phys. A, 122(10), 922. https://doi.org/10.1007/s00339-016-0452-6
- Ebrahimi, F. and Hosseini, S.H.S. (2016c), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
- Ebrahimi, F. and Nasirzadeh, P. (2015), "A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method", J. Theoret. Appl. Mech., 53(4), 1041-1052.
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
- Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2016h), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 1-16.
- Ebrahimi, F. and Barati, M.R. (2016i), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., In press.
- Ebrahimi, F. and Barati, M.R. (2016j), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
- Ebrahimi, F. and Barati, M.R. (2016k), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
- Ebrahimi, F. and Barati, M.R. (2016l), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
- Ebrahimi, F. and Barati, M.R. (2016m), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2016n), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 1-13.
- Ebrahimi, F. and Barati, M.R. (2016o), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
- Ebrahimi, F. and Barati, M.R. (2016p), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
- Ebrahimi, F. and Barati, M.R. (2016q), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
- Ebrahimi, F. and Barati, M.R. (2016r), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 1-12.
- Ebrahimi, F. and Barati, M.R. (2016s), "On nonlocal characteristics of curved inhomogeneous Euler-Bernoulli nanobeams under different temperature distributions", Appl. Phys. A, 122(10), 880. https://doi.org/10.1007/s00339-016-0399-7
- Ebrahimi, F. and Barati, M.R. (2016t), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intell. Mater. Syst. Struct., 1045389X16672569.
- Ebrahimi, F. and Barati, M.R. (2016u), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
- Ebrahimi, F. and Barati, M.R. (2016v), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 1-21.
- Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
- Ebrahimi, F. and Barati, M.R. (2017b), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
- Ebrahimi, F., Ehyaei, J. and Babaei, R. (2016), "Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation", Adv. Mater. Res., 5(4), 245-261. https://doi.org/10.12989/amr.2016.5.4.245
- Ebrahimi, F. and Jafari, A. (2016), "Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory", Adv. Mater. Res., 5(4), 261-276.
- Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezoelectromagnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
- Ebrahimi, F. and Mohsen, D. (2007), "Dynamic modeling of embedded curved nanobeams incorporating surface effects", Coupled Syst. Mech., 5(3), 255-267. https://doi.org/10.12989/CSM.2016.5.3.255
- Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Fidelus, J., Wiesel, E., Gojny, F., Schulte, K. and Wagner, H. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manufact., 36(11), 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
- Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymercarbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193(17), 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Hassan, I.A.H. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Comput., 127(1), 1-22. https://doi.org/10.1016/S0096-3003(00)00123-5
- Hu, N., Fukunaga, H., Lu, C., Kameyama, M. and Yan, B. (2005), "Prediction of elastic properties of carbon nanotube reinforced composites", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 461(2058), 1685-1710. https://doi.org/10.1098/rspa.2004.1422
- Ju, S.P. (2004), "Application of differential transformation to transient advective-dispersive transport equation", Appl. Math. Comput., 155(1), 25-38. https://doi.org/10.1016/S0096-3003(03)00755-0
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotubereinforced composite beams", Mech. Adv. Mater. Struct., 20(1), 28-37. https://doi.org/10.1080/15376494.2011.581412
- Lau, A.K.T. and Hui, D. (2002), "The revolutionary creation of new advanced materials-carbon nanotube composites", Compos. Part B: Eng., 33(4), 263-277. https://doi.org/10.1016/S1359-8368(02)00012-4
- Lau, K.T., Gu, C., Gao, G.H., Ling, H.Y. and Reid, S.R. (2004), "Stretching process of single-and multiwalled carbon nanotubes for nanocomposite applications", Carb., 42(2), 426-428. https://doi.org/10.1016/j.carbon.2003.10.040
- Odegard, G., Gates, T., Wise, K., Park, C. and Siochi, E. (2003), "Constitutive modeling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63(11), 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
- Pradhan, S. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vibr., 321(1), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018
- Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8), 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029
- Shen, H.S. (2004), "Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties", J. Sol. Struct., 41(7), 1961-1974. https://doi.org/10.1016/j.ijsolstr.2003.10.023
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Thostenson, E.T. and Chou, T.W. (2003), "On the elastic properties of carbon nanotube-based composites: modelling and characterization", J. Phys. D: Appl. Phys. 36(5), 573. https://doi.org/10.1088/0022-3727/36/5/323
- Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerospace Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50(8), 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
- Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotubereinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
- Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", J. Struct. Stabil. Dyn., 1540011.
- Xu, Y., Ray, G. and Abdel-Magid, B. (2006), "Thermal behavior of single-walled carbon nanotube polymermatrix composites", Compos. Part A: Appl. Sci. Manufact., 37(1), 114-121. https://doi.org/10.1016/j.compositesa.2005.04.009
- Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FGCNTRC beams", J. Struct. Stabil. Dyn., 1540017.
- Zenkour, A. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-buckling and free vibration", J. Sol. Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
- Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 081904. https://doi.org/10.1063/1.2336622
- Zhu, R., Pan, E. and Roy, A. (2007), "Molecular dynamics study of the stress-strain behavior of carbonnanotube reinforced Epon 862 composites", Mater. Sci. Eng.: A., 447(1), 51-57. https://doi.org/10.1016/j.msea.2006.10.054