References
- Sheldon Axler and Zeljko Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1-12. https://doi.org/10.1007/BF01194925
- Sheldon Axler, Zeljko Cuckovic, and N. V. Rao, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1951-1953. https://doi.org/10.1090/S0002-9939-99-05436-2
- S. Bell, Proper holomorphic mappings and the Bergman projection, Duke Math. J. 48 (1981), 167-175. https://doi.org/10.1215/S0012-7094-81-04811-0
-
S. Bell, Mapping problems in complex analysis and the
${\bar{\partial}}$ -problem, Bull. Amer. Math. Soc. 22 (1990), 233-259. https://doi.org/10.1090/S0273-0979-1990-15879-3 - S. Bell, Solving the Dirichlet problem in the plane by means of the Cauchy integral, Indiana Univ. Math. J. 39 (1990), no. 4, 1355-1371. https://doi.org/10.1512/iumj.1990.39.39060
- Steve Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), no. 1, 1-26. https://doi.org/10.1215/S0012-7094-91-06401-X
- Steve Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), no. 1, 1-26. https://doi.org/10.1215/S0012-7094-91-06401-X
- Steven R. Bell, The Cauchy transform, potential theory, and conformal mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
- Steven R. Bell, Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. Anal. Math. 78 (1999), 329-344. https://doi.org/10.1007/BF02791140
- S. Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950.
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102.
- Y.-B. Chung, Classification of toeplitz operators on hardy spaces of bounded domains in the plane, Math. Notes (to appear).
- Y.-B. Chung, Matrices of toeplitz operators on hardy spaces over bounded domains, Bull. Korean Math. Soc. (to appear).
-
Y.-B. Chung, Special orthonormal basis for
$l^2$ functions on the unit circle, Bull. Korean Math. Soc. (to appear). - Young-Bok Chung, Uniqueness of Toeplitz operator in the complex plane, Honam Math. J. 31 (2009), no. 4, 633-637. https://doi.org/10.5831/HMJ.2009.31.4.633
- P. R. Garabedian, Schwarz's lemma and the Szego kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35.