DOI QR코드

DOI QR Code

TOEPLITZ OPERATORS ON HARDY AND BERGMAN SPACES OVER BOUNDED DOMAINS IN THE PLANE

  • Received : 2016.10.27
  • Accepted : 2017.05.15
  • Published : 2017.06.25

Abstract

In this paper, we show that algebraic properties of Toeplitz operators on both Bergman spaces and Hardy spaces on the unit disc essentially generalizes on arbitrary bounded domains in the plane. In particular, we obtain results for the uniqueness property and commuting problems of the Toeplitz operators on the Hardy and the Bergman spaces associated to bounded domains.

Keywords

References

  1. Sheldon Axler and Zeljko Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1-12. https://doi.org/10.1007/BF01194925
  2. Sheldon Axler, Zeljko Cuckovic, and N. V. Rao, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1951-1953. https://doi.org/10.1090/S0002-9939-99-05436-2
  3. S. Bell, Proper holomorphic mappings and the Bergman projection, Duke Math. J. 48 (1981), 167-175. https://doi.org/10.1215/S0012-7094-81-04811-0
  4. S. Bell, Mapping problems in complex analysis and the ${\bar{\partial}}$-problem, Bull. Amer. Math. Soc. 22 (1990), 233-259. https://doi.org/10.1090/S0273-0979-1990-15879-3
  5. S. Bell, Solving the Dirichlet problem in the plane by means of the Cauchy integral, Indiana Univ. Math. J. 39 (1990), no. 4, 1355-1371. https://doi.org/10.1512/iumj.1990.39.39060
  6. Steve Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), no. 1, 1-26. https://doi.org/10.1215/S0012-7094-91-06401-X
  7. Steve Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), no. 1, 1-26. https://doi.org/10.1215/S0012-7094-91-06401-X
  8. Steven R. Bell, The Cauchy transform, potential theory, and conformal mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
  9. Steven R. Bell, Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. Anal. Math. 78 (1999), 329-344. https://doi.org/10.1007/BF02791140
  10. S. Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950.
  11. Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102.
  12. Y.-B. Chung, Classification of toeplitz operators on hardy spaces of bounded domains in the plane, Math. Notes (to appear).
  13. Y.-B. Chung, Matrices of toeplitz operators on hardy spaces over bounded domains, Bull. Korean Math. Soc. (to appear).
  14. Y.-B. Chung, Special orthonormal basis for $l^2$ functions on the unit circle, Bull. Korean Math. Soc. (to appear).
  15. Young-Bok Chung, Uniqueness of Toeplitz operator in the complex plane, Honam Math. J. 31 (2009), no. 4, 633-637. https://doi.org/10.5831/HMJ.2009.31.4.633
  16. P. R. Garabedian, Schwarz's lemma and the Szego kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35.