DOI QR코드

DOI QR Code

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

  • Bae, Soo-Jung (Department of Biotechnology, Yeungnam University) ;
  • Park, Young-Hwan (Department of Biotechnology, Yeungnam University) ;
  • Bae, Hyeun-Jong (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Jeon, Junhyun (Department of Biotechnology, Yeungnam University) ;
  • Bae, Hanhong (Department of Biotechnology, Yeungnam University)
  • Received : 2017.02.24
  • Accepted : 2017.04.03
  • Published : 2017.06.28

Abstract

The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti-Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell wall-degrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

Keywords

References

  1. Samuels GJ. 2006. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96: 195-206. https://doi.org/10.1094/PHYTO-96-0195
  2. Benitez T, Rincon AM, Limon MC, Codon AC. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249-260.
  3. Munir S, Jamal Q, Bano K, Sherwani SK, Abbas MN, Azam S, et al. 2014. Trichoderma and biocontrol genes. Sci. Agric. 5: 40-45.
  4. Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7: 89-123.
  5. Romao-Dumaresq AS, de Araujo WL, Talbot NJ, Thornton CR. 2012. RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7: e47888. https://doi.org/10.1371/journal.pone.0047888
  6. Schuster A, Schmoll M. 2010. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87: 787-799. https://doi.org/10.1007/s00253-010-2632-1
  7. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. 2004. Trichoderma sp., opportunistic avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. https://doi.org/10.1038/nrmicro797
  8. Bae H. 2011. Trichoderma species as abiotic and biotic stress quenchers in plants. Res. J. Biotechnol. 6: 73-79.
  9. Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 60: 3279-3295. https://doi.org/10.1093/jxb/erp165
  10. Bae H, Roberts DP, Lim H-S, Strem MD, Park S-C, Ryu C-M, et al. 2011. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol. Plant Microbe Interact. 24: 336-351. https://doi.org/10.1094/MPMI-09-10-0221
  11. Bailey BA, Lumsden RD. 1998. Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In Kubicek CP, Harman GE (eds.). Trichoderma and Gliocladium. Taylor and Francis Ltd., Bristol. London, UK.
  12. Grondona I, Hermosa R, Tejada M, Gomis MD, Mateos PF, Bridge PD, et al. 1997. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl. Environ. Microbiol. 63: 3189-3198.
  13. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A. 2011. Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl. Environ. Microbiol. 77: 4361-4370. https://doi.org/10.1128/AEM.00129-11
  14. Woo SL, Scala F, Ruocco M, Lorito M. 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathology 96: 181-185. https://doi.org/10.1094/PHYTO-96-0181
  15. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40: 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
  16. McIntyre M, Nielsen J, Arnau J, van der Brink H, Hansen K, Madrid S. 2004. Proceedings of the 7th European Conference on Fungal Genetics. Copenhagen, Denmark.
  17. Ajesh K, Sreejith K. 2009. Peptide antibiotics: an alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 30: 999-100. https://doi.org/10.1016/j.peptides.2009.01.026
  18. Kummerer K. 2009. Antibiotics in the aquatic environment - a review-part I. Chemosphere 75: 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086
  19. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J. 2010. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156: 270-277. https://doi.org/10.1099/mic.0.032540-0
  20. Shoresh M, Harman GE, Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48: 21-43. https://doi.org/10.1146/annurev-phyto-073009-114450
  21. Hermosa MR, Grondona I, Iturriaga EA, Diaz-Minguez JM, Castro C , Monte E , Garcia-Acha I. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 66: 1890-1898. https://doi.org/10.1128/AEM.66.5.1890-1898.2000
  22. Larena I, Salazar O, Gonzalez V, Julian MC, Rubio V. 1999. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J. Biotechnol. 75: 187-194. https://doi.org/10.1016/S0168-1656(99)00154-6
  23. Park SU, Lim H-S, Park K-C, Park Y-H, Bae H. 2013. Fungal endophytes from three cultivars of Panax ginseng Meyer cultivated in Korea. J. Ginseng Res. 36: 107-113.
  24. Rouini M-R, Ardakani YH, Soltani F, Aboul-Enein HY, Foroumadi A. 2006. Development and validation of a rapid HPLC method for simultaneous determination of tramadol, and its two main metabolites in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830: 207-211. https://doi.org/10.1016/j.jchromb.2005.10.039
  25. Bae S-J, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, et al. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 92: 128-138. https://doi.org/10.1016/j.biocontrol.2015.10.005
  26. Borman AM, Linton CJ, Miles S-J, Johnson EM. 2008. Molecular identification of pathogenic fungi. J. Antimicrob. Chemother. 61: i7-i12. https://doi.org/10.1093/jac/dkm425
  27. Chen XY, Qi YD, Wei JH, Zhang Z, Wang DL, Feng JD, Gan BC. 2010. Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World J. Microbiol. Biotechnol. 27: 495-503.
  28. Roblems P. 2003. Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobot. 38: 113-124. https://doi.org/10.1007/BF02803144
  29. Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG, Aleu J, et al. 2011. Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins (Basel) 3: 1220-1232. https://doi.org/10.3390/toxins3091220
  30. Degenkolb T, Grafenhan T, Nirenberg HI, Gams W, Bruckner H. 2006. Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J. Agric. Food Chem. 54: 7047-7061. https://doi.org/10.1021/jf060788q
  31. Romeh A. 2013. Diethyl phthalate and dioctyl phthalate in Plantago major L. Afr. J. Agric. Res. 8: 4360-4364.
  32. Chandra S, Sharma AK. 2009. Antifungal and spectral studies of Cr(III) and Mn(II) complexes derived from 3,3'- thiodipropionic acid derivative. Res. Lett. Inorg. Chem. 2009: 945670.
  33. Rane RA, Bangalore P, Borhade SD, Khandare PK. 2013. Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4- oxadiazole derivatives as antimicrobial and anti-tubercular agents. Eur. J. Med. Chem. 70: 49-58. https://doi.org/10.1016/j.ejmech.2013.09.039
  34. Bailey AV, De Lucca AJ, Moreau JP. 1989. Antimicrobial properties of some erucic acid-glycolic acid derivatives. J. Am. Oil Chem. Soc. 66: 932-934. https://doi.org/10.1007/BF02682611
  35. Policegoudra RS, Goswami S, Aradhya SM, Chatterjee S, Datta S, Sivaswamy R, et al. 2012. Bioactive constituents of Homalomena aromatica essential oil and its antifungal activity against dermatophytes and yeasts. J. Mycol. Med. 22: 83-87. https://doi.org/10.1016/j.mycmed.2011.10.007
  36. Morandim ADA, Pin AR, Pietro NAS, Alecio AC, Kato MJ, Young CM, et al. 2010. Composition and screening of antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves. Afr. J. Biotechnol. 9: 6135-6139.
  37. Al-Jafari A-H, Vila R, Freixa B, Tomi F, Casanova J, Costa J, Canigueral S. 2011. Composition and antifungal activity of the essential oil from the rhizome and roots of Ferula hermonis. Phytochemistry 72: 1406-1413. https://doi.org/10.1016/j.phytochem.2011.04.013
  38. Cheng S-S, Chung M-J, Lin C-Y, Wang Y-N, Chang S-T. 2012. Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents. J. Agric. Food Chem. 60: 124-128. https://doi.org/10.1021/jf2042196
  39. Li G-X, Liu Z-Q. 2009. Unusual antioxidant behavior of alpha- and gamma-terpinene in protecting methyl linoleate, DNA, and erythrocyte. J. Agric. Food Chem. 57: 3943-3948. https://doi.org/10.1021/jf803358g
  40. Bencini A, Lippolis V. 2010. 1,10-Phenanthroline: a versatile building block for the construction of ligands for various purposes. Coordin. Chem. Rev. 254: 2096-2180. https://doi.org/10.1016/j.ccr.2010.04.008
  41. Markovich N, Kononova GL. 2003. Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Appl. Biochem. Microbiol. 39: 341-351. https://doi.org/10.1023/A:1024502431592
  42. Vieira PM, Coelho ASG, Steindorff AS, de Siqueira SJL, Silva RDN, Ulhoa CJ. 2013. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14: 1-11. https://doi.org/10.1186/1471-2164-14-1

Cited by

  1. Phospholipase A activity and the biocontrol potential of Trichoderma harzianum and Trichoderma atroviride vol.31, pp.11, 2021, https://doi.org/10.1080/09583157.2021.1940864