DOI QR코드

DOI QR Code

Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era

  • Sarasan, Manomi (Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology) ;
  • Puthumana, Jayesh (Department of Biological Science, College of Science, Sungkyunkwan University) ;
  • Job, Neema (Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology) ;
  • Han, Jeonghoon (Department of Biological Science, College of Science, Sungkyunkwan University) ;
  • Lee, Jae-Seong (Department of Biological Science, College of Science, Sungkyunkwan University) ;
  • Philip, Rosamma (Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology)
  • Received : 2017.01.13
  • Accepted : 2017.04.03
  • Published : 2017.06.28

Abstract

Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.

Keywords

References

  1. Petrini O. 1991. Fungal endophytes of tree leaves, pp. 179-197. In Andrews JH , Hirano SS (eds.). Microbial Ecology of Leaves. Springer-Verlag, New York. USA.
  2. Strobel GA. 2002. Rain forest endophytes and bioactive products. Crit. Rev. Biotechnol. 22: 315-333. https://doi.org/10.1080/07388550290789531
  3. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA. 2000. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3: 267-274. https://doi.org/10.1046/j.1461-0248.2000.00159.x
  4. Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67: 491-502. https://doi.org/10.1128/MMBR.67.4.491-502.2003
  5. Stone JK, Bacon CW, White JF. 2000. An overview of endophytic microbes: endophytism defined, pp. 3-30. In Bacon CW, White JF (eds.), Microbial Endophytes. Dekker, New York. USA.
  6. Schulz B, Boyle C. 2006. What are endophytes? pp. 1-13. In Schulz B, Boyle C, Sieber TN (eds.), Microbial Root Endophytes. Springer, Berlin. Germany.
  7. Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182: 1-17. https://doi.org/10.1111/j.1469-8137.2009.02771.x
  8. Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V. 2010. Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot. Mar. 53: 457-468.
  9. Sturz AV, Nowak J. 2000. Endophytic communites of rhizobacteria and the strategies required to create yield enhancing associations with crops. App. Soil Ecol. 15: 183-190. https://doi.org/10.1016/S0929-1393(00)00094-9
  10. Strobel GA. 2003. Endophytes as sources of bioactive products. Microbes Infect. 5: 535-544. https://doi.org/10.1016/S1286-4579(03)00073-X
  11. Rai M, Gade A, Rathod D, Dar M, Varma A. 2012. Mycoendophytes in medicinal plants?: diversity and bioactivities. Bioscience 4: 86-96.
  12. Strobel G, Yang X , Sears J, Kramer R, S idhu RS, H ess WM. 1996. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142: 435-440. https://doi.org/10.1099/13500872-142-2-435
  13. Strobel G, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, et al. 2008. The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154: 3319-3328. https://doi.org/10.1099/mic.0.2008/022186-0
  14. Bhadury P, Wright PC. 2004. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219: 561-578.
  15. Tenguria RK, Khan FN, Quereshi S. 2011. Endophytes - mines of pharmacological therapeutics. World J. Sci. Technol. 1: 127-149.
  16. Schulz B, Boyle C, Draeger S. 2002. Endophytic fungi: a source of biologically active secondary metabolites. Mycol. Res. 106: 996-1004. https://doi.org/10.1017/S0953756202006342
  17. Jones EBG. 2000. Marine fungi: some factors influencing biodiversity. Fungal Divers. 4: 53-73.
  18. Jones EBG, Stanley SJ, Pinruan U. 2008. Marine endophyte sources of new chemical natural products: a review. Bot. Mar. 51: 163-170.
  19. Schulz B, Boyle C. 2005. The endophytic continuum: review. Mycol. Res. 109: 661-698. https://doi.org/10.1017/S095375620500273X
  20. Kobayashi DY, Palumbo JD. 2000. Bacterial endophytes and their effects on plants and uses in agriculture, pp. 199-236. In Bacon CW, White JF (eds.). Microbial Endophytes. Dekker, New York. USA.
  21. Tudzynski B, Sharon A. 2002. Biosynthesis, biological role and application of fungal hormones, pp. 183-211. In Osiewacz HD (ed.). The Mycota X Industrial Applications. Springer, Berlin. Germany.
  22. Kogel KH, Franken P, Hückelhoven R. 2006. Endophyte or parasite - what decides? Curr. Opin. Plant Biol. 9: 358-363. https://doi.org/10.1016/j.pbi.2006.05.001
  23. Hendry SJ, Boddy L, Lonsdale D. 2002. Abiotic variables effect differential expression of latent infections in beech (Fagus sylvatica). New Phytol. 155: 449-460. https://doi.org/10.1046/j.1469-8137.2002.00473.x
  24. Hyde KD, Soytong K. 2008. The fungal endophyte dilemma. Fungal Divers. 33: 163-173.
  25. Petrini O, Sieber T, Toti L, Viret O. 1992. Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat. Toxins 1: 185-196.
  26. Bacon CW, White JF. 1994. Stain, media and procedure for analyzing endophytes, pp. 47-56. In Bacon CW, White JF (eds.). Biotechnology of Endophytic Fungi of Grasses. CRC Press, Boca Raton. FL. USA.
  27. Bissegger M, Sieber TN. 1994. Assemblages of endophytic fungi in coppice shoots of Castanea sativa. Mycologia 86: 648-655. https://doi.org/10.2307/3760535
  28. Hollants J, Leliaert F, De Clerck O, Willems A. 2010. How endo- is endo-? Surface sterilization of delicate samples: a Bryopsis (Bryopsidales, Chlorophyta) case study. Symbiosis 51: 131-138. https://doi.org/10.1007/s13199-010-0068-0
  29. Schulz B, Guske S, Dammann U, Boyle C. 1998. Endophytehost interactions. II. Defining symbiosis of the endophytehost interaction. Symbiosis 25: 217-223.
  30. Otero JT, Ackerman JD, Bayman P. 2002. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am. J. Bot. 89: 1852-1858. https://doi.org/10.3732/ajb.89.11.1852
  31. Suryanarayanan TS, Venkatesan G, Murali TS. 2003. Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Curr. Sci. 85: 489-493.
  32. Suryanarayanan TS. 1992. Light-incubation: a neglected procedure in mycology. Mycologist 6: 144. https://doi.org/10.1016/S0269-915X(09)80603-4
  33. Mitchell J, Roberts PJ, Moss ST. 1995. Sequence or structure? A short review on the application of nucleic acid sequence information to fungal taxonomy. Mycologist 9: 67-75. https://doi.org/10.1016/S0269-915X(09)80212-7
  34. Wani MC, Taylor HL, Wall ME, Goggon P, McPhail AT. 1971. Plant antitumor agents. VI. The isolation of taxol, a novel antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325-2327. https://doi.org/10.1021/ja00738a045
  35. Stierle A, Strobel GA, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae. Science 260: 214-216. https://doi.org/10.1126/science.8097061
  36. Strobel G, Stierle A, Stierle D, Hess WM. 1993. Taxomyces andreanaea, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew. Mycotaxon 47: 71-78.
  37. Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, et al. 2007. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146: 60-78. https://doi.org/10.1016/j.cbpc.2006.05.007
  38. Zuccaro A, Mitchell JI. 2005. Fungal communities of seaweeds, pp. 533-579. In Dighton J, White JF, Oudemans P (eds.). The Fungal Community. CRC Press, New York. USA.
  39. Yu H , Zang L , Li L , Zheng C, G uo L , Li W , et al. 2010. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Mycol. Res. 165: 437-449.
  40. de Oliveira ALL, de Felicio R, Debonsi HM. 2012. Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi. Braz. J. Pharmacognosy 22: 906-920. https://doi.org/10.1590/S0102-695X2012005000083
  41. Bode HB, Bethe B, Hofs R, Zeeck A. 2002. Big effects from small changes: possible ways to explore nature's chemical diversity. Chem. Biochem. 3: 619-627.
  42. Klemke C, Kehraus S, Wright AD, Koenig GM. 2004. New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J. Nat. Prod. 67: 1058-1063. https://doi.org/10.1021/np034061x
  43. Schulz B, Draeger S, dela Cruz TE, Rheinheimer J, Siems K, Loesgen S, et al. 2008. Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot. Mar. 51: 219-234.
  44. Kjer J, Debbab A, Aly AH, Proksch P. 2010. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat. Protoc. 5: 479-490. https://doi.org/10.1038/nprot.2009.233
  45. Kralj S, Kehraus A, Krick E, Eguereva G, Kelter M, Maurer A, et al. 2006. Arugosins G and H: prenylated polyketides from the marine-derived fungus Emericella nidulans var. acristata. J. Nat. Prod. 69: 995-1000. https://doi.org/10.1021/np050454f
  46. Naganuma M, Nishida M, Kuramochi K, Sugawara F, Yoshida H, Mizushina Y. 2008. 1-Deoxyrubralactone, a novel specific inhibitor of families X and Y of eukaryotic DNA polymerases from a fungal strain derived from sea algae. Bioorg. Med. Chem. 16: 2939-2944. https://doi.org/10.1016/j.bmc.2007.12.044
  47. Qiao MF, Ji NY, Miao FP, Yin XL. 2011. Steroids and an oxylipin from an algicolous isolate of Aspergillus flavus. Magn. Reson. Chem. 49: 366-369. https://doi.org/10.1002/mrc.2748
  48. Erbert C, Lopes AA, Yokoya NS, Furtado NAJC, Conti R, Pupo MT, et al. 2012. Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychiara dicans. Bot. Mar. 55: 435-440.
  49. Knig GM, Wright AD. 1996. Marine natural products research: current directions and future potential. Planta Med. 62: 193-211. https://doi.org/10.1055/s-2006-957861
  50. Frenz JL, Kohl AC. 2004. Marine natural products as therapeutic agents: Part 2. Expert Opin. Ther. Pat. 14: 17-33. https://doi.org/10.1517/13543776.14.1.17
  51. Pontius A, Krick A, Mesry R, Kehraus S, Foegen SE, Muller M, et al. 2008. Monodictyochromes A and B, dimeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J. Nat. Prod. 71: 1793-1799. https://doi.org/10.1021/np800392w
  52. Pontius A, Krick A, Kehraus S, Foegen SE, Müller M, Klimo, K, et al. 2008. Noduliprevenone: a novel heterodimeric chromanone with cancer chemopreventive potential. Chem. Eur. J. 14: 9860-9863. https://doi.org/10.1002/chem.200801574
  53. Krick A, Kehraus S, Gerhäuser C, Klimo K, Nieger M, Maier A, et al. 2007. Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J. Nat. Prod. 70: 353-360. https://doi.org/10.1021/np060505o
  54. Zhu TJ, Du L, Hao PF, Lin ZJ, Gu QQ. 2009. A novel tricyclic derivative of citrinin, from an algicolous fungus Penicillium sp. i-1-1. Chin. Chem. Lett. 20: 917-920. https://doi.org/10.1016/j.cclet.2009.03.009
  55. Cui CM, Li XM, Meng L, Li CS, Huang CG, Wang BG. 2010. 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J. Nat. Prod. 73: 1780-1784. https://doi.org/10.1021/np100386q
  56. Cui CM, Li XM, Li CS, Proksch P, Wang BG. 2010. Cytoglobosins A-G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J. Nat. Prod. 73: 729-733. https://doi.org/10.1021/np900569t
  57. Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, et al. 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J. Nat. Prod. 69: 1622-1625. https://doi.org/10.1021/np060248n
  58. Gao SS, Li XM, Du FY, Li CS, Proksch P, Wang BG. 2011. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar. Drugs 9: 59-70.
  59. Sun H, Li X, Meng L, Cui C, Gao S, Li C, et al. 2012. Asperolides A-C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48. J. Nat. Prod. 75: 148-152. https://doi.org/10.1021/np2006742
  60. De Felicio R, Pavão GB, de Oliveira ALL, Erbert C, Conti R, Pupo MT, et al. 2015. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev. Bras. Farmacogn. 25: 641-650. https://doi.org/10.1016/j.bjp.2015.08.003
  61. Abdel-Lateff A, Fisch KM, Wright AD, Konig GM. 2003. A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med. 69: 831-834. https://doi.org/10.1055/s-2003-43209
  62. Sun R, Miao F, Zhang J, Wang G, Yin X. 2013. Three new xanthone derivatives from an algicolous isolate of Aspergillus wentii. Magn. Reson. Chem. 51: 65-68. https://doi.org/10.1002/mrc.3903
  63. Yang R, Li C, Lin Y, Peng G, She Z, Zhou S. 2006. Lactones from a brown alga endophytic fungus (No. ZZF36) from the South China Sea and their antimicrobial activities. Bioorg. Med. Chem. Lett. 16: 4205-4208. https://doi.org/10.1016/j.bmcl.2006.05.081
  64. Dai J, Krohn K, Florke U, Pescitelli G, Kerti G, Papp T, et al. 2010. Curvularin-type metabolites from the fungus Curvularia sp. isolated from a marine algae. Eur. J. Org. Chem. 2010: 6928-6937. https://doi.org/10.1002/ejoc.201001237
  65. Qiao MF, Ji NY, Liu XH, Li K, Zhu QM, Xue QZ. 2010. Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg. Med. Chem. Lett. 20: 5677-5680. https://doi.org/10.1016/j.bmcl.2010.08.024
  66. Gao SS, Li XM, Zhang Y, Li CS, Wang BG. 2011. Conidiogenones H and I, two new diterpenes of cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Chem. Biodivers. 8: 1748-1753. https://doi.org/10.1002/cbdv.201000378
  67. De Silva ED, Geiermann A, Mitova MI, Kuegler P, Blunt JW, Cole ALJ, et al. 2009. Isolation of 2-pyridone alkaloids from a New Zealand marine-derived Penicillium species. J. Nat. Prod. 72: 477-479. https://doi.org/10.1021/np800627f
  68. Du FY, Li XM, Li CS, Shang Z, Wang BG. 2012. Cristatumins A-D, new indole alkaloids from the marinederived endophytic fungus Eurotium cristatum EN-220. Bioorg. Med. Chem. Lett. 22: 4650-4653. https://doi.org/10.1016/j.bmcl.2012.05.088
  69. Elsebai MF, Kehraus S, Lindequist U, Sasse F, Shaaban S, Gutschow M, et al. 2011. Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereal. Org. Biomol. Chem. 9: 802-808. https://doi.org/10.1039/C0OB00625D
  70. Miao F, Li X, Liu X, Cichewicz RH, Ji N. 2012. Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar. Drugs 10: 131-139. https://doi.org/10.3390/md10010131
  71. Liu XF, Miao F, Liang X, Ji N. 2014. Ergosteroid derivatives from an algicolous strain of Aspergillus ustus. Nat. Prod. Lett. 28: 1182-1186. https://doi.org/10.1080/14786419.2014.923996
  72. Yang HB, Li F, Ji NY. 2016. Alkaloids from an algicolous strain of Talaromyces sp. Chin. J. Oceanol. Limnol. 34: 367-371. https://doi.org/10.1007/s00343-015-4316-2
  73. Manjusha WA, Anusha WA, Amritha Krishna BV, Lavanya L, Rejin Prasad JJ, Remya RA, Surya V. 2013. Molecular bioprospecting of Streptomyces sp. (ES5) from marine algae Hypnea musiformis. Ind. J. Biotechnol. 12: 218-224.
  74. Zhang Y, Li XM, Wang CY, Wang BG. 2007. A new naphthoquinoneimine derivative from the marine algalderived endophytic fungus Aspergillus niger EN-13. Chin. Chem. Lett. 18: 951-953. https://doi.org/10.1016/j.cclet.2007.05.054
  75. Zhang Y, Wang S, Li XM, Cui CM, Feng C, Wang BG. 2007. New sphingolipids with a previously unreported 9-methyl- C20-sphingosine moiety from a marine algicolous endophytic fungus Aspergillus niger EN-13. Lipids 42: 759-764. https://doi.org/10.1007/s11745-007-3079-8
  76. Zhang Y, Li XM, Wang BG. 2007. Nigerasperones A-C, newmonomeric and dimeric naphtho-g-pyrones from a marine alga-derived endophytic fungus Aspergillus niger EN-13. J. Antibiot. 60: 204-210. https://doi.org/10.1038/ja.2007.24
  77. Tarman K, Palm GJ, Porzel A, Merzweiler K, Arnold N, Wessjohannd LA, et al. 2012. Helicascolide C, a new lactone from an Indonesian marine algicolous strain of Daldinia eschscholzii (Xylariaceae, Ascomycota). Phytochem. Lett. 5: 83-86. https://doi.org/10.1016/j.phytol.2011.10.006
  78. Abdel-Lateff A, Konig GM, Fisch KM, Holler U, Jones PG, Wright AD. 2002. New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J. Nat. Prod. 65: 1605-1611. https://doi.org/10.1021/np020128p
  79. Abdel-Lateff A, Klemke C, König GM, Wright AD. 2003. Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J. Nat. Prod. 66: 706-708. https://doi.org/10.1021/np020518b
  80. Cui CM, L i XM, Li C S, Sun H F, G ao S S, W ang BG. 2009. Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helv. Chim. Acta 92: 1366-1370. https://doi.org/10.1002/hlca.200900084
  81. Nagle DG, Zhou YD, Mora FD, Mohammed KA, Kim YP. 2004. Mechanism targeted discovery of antitumor marine natural products. Curr. Med. Chem. 11: 1725-1756. https://doi.org/10.2174/0929867043364991
  82. Abdel-Lateff A. 2008. Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett. 49: 6398-6400. https://doi.org/10.1016/j.tetlet.2008.08.064
  83. Elsebai MF, Kehraus S, Gütschow M, König GM. 2010. Spartinoxide, a new enantiomer of A82775C with inhibitory activity toward HLE from the marine-derived fungus Phaeosphaeria spartinae. Nat. Prod. Commun. 5: 1071-1076.
  84. Miao FP, Liang XR, Liu XH, Ji NY. 2014. Aspewentins A-C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii. J. Nat. Prod. 77: 429-432. https://doi.org/10.1021/np401047w
  85. Arnold AE, Henk DA, Eells RL. 2007. Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99: 185-206. https://doi.org/10.1080/15572536.2007.11832578
  86. Hawksworth DL. 2004. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 50: 9-18.
  87. Thirunavukkarasu N, Suryanarayanan TS, Murali TS, Ravishankar JP, Gummadi SN. 2011. L-Asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2: 147-155.
  88. Thangavel A, Krishnamoorthy G, Subramanian M, Maruthamuthu M. 2013. Seaweed endophytic fungi: a potential source for glutaminase free L-asparaginase. Chem. Sci. Rev. Lett. 2: 348-354.
  89. Flewelling AJ, Johnson JA, Gray CA. 2013. Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. Bot. Mar. 56: 287-297.
  90. Flewelling A, Ellsworth K, Sanford J, Forward E, Johnson J, Gray C. 2013. Macroalgal endophytes from the Atlantic coast of Canada: a potential source of antibiotic natural products? Microorganisms 1: 175-187. https://doi.org/10.3390/microorganisms1010175
  91. Mathan S, Subramanian V, Nagamony S, Ganapahy K. 2013. Isolation of endophytic fungi from marine algae and its bioactivity. Int. J. Res. Pharm. Sci. 4: 45-49.
  92. Sajitha N, Vasuki S, Suja M, Kokilam G, Gopinath M. 2013. Screening of L-glutaminase from seaweed endophytic fungi. Int. Res. J. Pharm. Appl. Sci. 3: 206-209.
  93. Kaaria P, Wakibia J, Matiru V, Ndung'u M, Bii C. 2015. Antimicrobial screening of marine endophytes and epiphytes isolated from marine algae of Kenyan Indian Ocean. J. Appl. Environ. Microbiol. 3: 70-74.
  94. Venkatachalam A, Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS. 2015. Endophytic fungi of marine algae and seagrasses: a novel source of chitin modifying enzymes. Mycosphere 6: 345-355. https://doi.org/10.5943/mycosphere/6/3/10
  95. Krohn K, Dai J, Florke U, Aust HJ, Drager S, Schulz B. 2005. Botryane metabolites from the fungus Geniculosporium sp. isolated from the marine red alga Polysiphonia. J. Nat. Prod. 68: 400-405. https://doi.org/10.1021/np0498206
  96. Kasettrathat C, Ngamrojanavanich N, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. 2008. Cytotoxic and antiplasmodial substances from marine-derived fungi, Nodulisporium sp. and CRI247-01. Phytochemistry 69: 2621-2626. https://doi.org/10.1016/j.phytochem.2008.08.005

Cited by

  1. Natural products for human health: an historical overview of the drug discovery approaches vol.32, pp.16, 2018, https://doi.org/10.1080/14786419.2017.1356838
  2. Influence of OSMAC-Based Cultivation in Metabolome and Anticancer Activity of Fungi Associated with the Brown Alga Fucus vesiculosus vol.17, pp.1, 2019, https://doi.org/10.3390/md17010067
  3. New phomalone derivatives from the endolichenic fungusCochliobolus kusanoiin Ny-Alesund Arctic vol.66, pp.3, 2017, https://doi.org/10.1002/jccs.201800220
  4. An online resource for marine fungi vol.96, pp.1, 2017, https://doi.org/10.1007/s13225-019-00426-5
  5. Characterization of the lipid profile of Antarctic brown seaweeds and their endophytic fungi by gas chromatography-mass spectrometry (GC-MS) vol.42, pp.8, 2017, https://doi.org/10.1007/s00300-019-02529-w
  6. Endophytic Fungi of Marine Alga From Konkan Coast, India-A Rich Source of Bioactive Material vol.7, pp.None, 2017, https://doi.org/10.3389/fmars.2020.00031
  7. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration vol.7, pp.3, 2017, https://doi.org/10.1016/j.heliyon.2021.e06362
  8. Terpenoids from the Marine-Derived Fungus Aspergillus sp. RR-YLW-12, Associated with the Red Alga Rhodomela confervoides vol.84, pp.6, 2017, https://doi.org/10.1021/acs.jnatprod.1c00021
  9. Antimicrobial Compounds Isolated from Endolichenic Fungi: A Review vol.26, pp.13, 2017, https://doi.org/10.3390/molecules26133901
  10. An Optimized and Efficient CRISPR/Cas9 System for the Endophytic Fungus Pestalotiopsis fici vol.7, pp.10, 2017, https://doi.org/10.3390/jof7100809
  11. Monascin and monascinol, azaphilonoid pigments from Mortierella polycephala AM1: in silico and in vitro targeting of the angiogenic VEGFR2 kinase vol.77, pp.1, 2017, https://doi.org/10.1515/znc-2021-0095