과제정보
연구 과제 주관 기관 : Pamukkale University
참고문헌
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Anandrao, K.S., Gupta, R.K., Ramachandran, P and Ra, G.V. (2012), "Free vibration analysis of functionally graded beams", Defence Sci. J., 62(3), 139-146. https://doi.org/10.14429/dsj.62.1326
- Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Eur. J. Mech. A-Solid., 42, 112-124. https://doi.org/10.1016/j.euromechsol.2013.05.002
- Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinforced Plast. Compos., 27(7), 683-691. https://doi.org/10.1177/0731684407081369
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Bambill, D.V., Rossit, C.A. and Felix, D.H. (2015), "Free vibrations of stepped axially functionally graded timoshenko beams", Meccanica, 50(4), 1073-1087. https://doi.org/10.1007/s11012-014-0053-4
- Cunedioglu, Y. (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech., 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003
- Demir, E., Callioglu, H. and Sayer, M. (2013a), "Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation", Sci. Eng. Compos. Mater., 20(4), 359-370.
- Demir, E., Callioglu, H. and Sayer, M. (2013b), "Free vibration of symmetric FG sandwich Timoshenko beam with simply supported edges", Indi. J. Eng. Mater. Sci., 20, 515-521.
- Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill, Singapore.
- Jing, L.L., Ming, P.J., Zhang, W.P., Fu, L.R. and Cao, Y.P. (2016), "Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method", Compos. Struct., 138, 192-213. https://doi.org/10.1016/j.compstruct.2015.11.027
- Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
- Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
- Koizumi, M. (1993), "The concept of FGM", Ceramic Trans., Func. Grade Mater., 34, 3-10.
- Koizumi, M. (1997), "FGM Activities in Japan", Compos. Part B, 28B(1-2), 1-4, https://doi.org/10.1016/S1359-8368(96)00016-9
- Krodkiewski, J.M. (2008), Mechanical Vibration, Design and Print Centre University of Melbourne.
- Li, X.F., Kang, Y.A. and Wu, J.X. (2013), "Exact frequency equations of free vibration of exponentially functionally graded beams", Appl. Acoust., 74(3), 413-420. https://doi.org/10.1016/j.apacoust.2012.08.003
- Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation", Compos. Part B-Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B-Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Sina, S.A. Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Wang, C.M., Ke, L.L., Roy Chowdhury, A.N., Yang, J., Kitipornchai, S. and Fernando, D. (2017), "Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams", Eng. Struct., 130, 275-281. https://doi.org/10.1016/j.engstruct.2016.10.051
- Wang, Z.H., Wang, X.H., Xu, G.D., Chen, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
- Wei, D., Liu, Y.H. and Xiang, Z.H. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020
- Wu, L., Wang, Q.S. and Elishakoff, I. (2005), "Semi-inverse method for axially functionally graded beams with anti-symmetric vibration mode", J. Sound Vib., 284(3-5), 1190-1202. https://doi.org/10.1016/j.jsv.2004.08.038
- Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029
피인용 문헌
- Free Vibration Analysis of a Functionally Graded Material Coated Aluminum Beam vol.58, pp.2, 2017, https://doi.org/10.2514/1.j059002
- Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge vol.77, pp.3, 2021, https://doi.org/10.12989/sem.2021.77.3.343