과제정보
연구 과제 주관 기관 : National Research Foundation of Korea (NRF)
참고문헌
- Alefeld, G. and Herzberber, J. (1983), Introductions to Interval Computations, Academic Press, New York.
- Baricz, A., Jankov, D. and Pogany, T.K. (2012), "Neumann series of bessel functions", Integr. Transf. Spec. F., 23(7), 529-438. https://doi.org/10.1080/10652469.2011.609483
- Belblidia, F., Lee, J.E.B., Rechak, S. and Hinton, E. (2015), "Topology optimization of plate structures using a single-or three-layered artificial material model", Adv. Eng. Softw., 32(2), 159-168. https://doi.org/10.1016/S0045-7949(00)00141-3
- Chen, S.H. and Yang, X.W. (2000), "Interval finite element method for beam structures", Finite Element. Anal. Des., 34(1), 75-88. https://doi.org/10.1016/S0168-874X(99)00029-3
- Galal, O.H. (2014), "A proposed stochastic finite difference approach based on homogeneous chaos expansion", J. Appl. Math., http://dx.doi.prg/10.1155/2013/950469.
- Gao, W. (2007), "Interval finite element analysis using interval factor method", Comput. Mech., 39(6), 709-717. https://doi.org/10.1007/s00466-006-0055-8
- Hossenini, S.M. and Shahabian, F. (2014), "Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method", Struct. Mech. Eng., 49(1), 697-708.
- Juan, C.A.Z. and Kimura, H. (2014), "Monte Carlo approximate tensor moment simulations", Discussion Paper, Henley Business School, University of Reading.
- Koyluoglu, H.U. and Elishakoff, I. (1998), "A comparison of stochastic and interval finite elements applied to shear frames with uncertain stiffness properties", Comput. Struct., 67(1), 91-98. https://doi.org/10.1016/S0045-7949(97)00160-0
- Lee, D.K., Kim, Y.W., Shin, S.M. and Lee, J.H. (2016), "Real-time response assessment in steel frame remodeling using position-adjustment drift-curve formulations", Automat. Constr., 62, 57-65. https://doi.org/10.1016/j.autcon.2015.11.002
- Lee, D.K. (2016), "Additive 2D and 3D performance ratio analysis for steel outrigger alternative design", Steel Compos. Struct., 20(5), 1133-1153. https://doi.org/10.12989/scs.2016.20.5.1133
- Lee, D.K., Park, S.S. and Shin, S.M. (2008), "Non-stochastic interval arithmetic-based finite element analysis for structural uncertainty response estimate", Struct. Eng. Mech., 29(5), 469-488. https://doi.org/10.12989/sem.2008.29.5.469
- Lee, D.K. and Shin, S.M. (2014), "Advanced high strength steel tube diagrid using TRIZ and nonlinear pushover analysis", J. Constr. Steel Res., 96, 151-158. https://doi.org/10.1016/j.jcsr.2014.01.005
- Lee, D.K. and Shin, S.M. (2015), "High tensile UL700 frame module with adjustable control of length and angle", J. Constr. Steel Res., 106, 246-257. https://doi.org/10.1016/j.jcsr.2014.12.003
- Lee, D.K. and Shin, S.M. (2015), "Nonlinear pushover analysis of concrete column reinforced by multi-layered, high strength steel UL700 plates", Eng. Struct., 90, 1-14. https://doi.org/10.1016/j.engstruct.2015.01.045
- Lee, D.K., Starossek, U. and Shin, S.M. (2010), "Topological optimized design considering dynamic problem with non-stochastic structural uncertainty", Struct. Eng. Mech., 36(1), 79-94. https://doi.org/10.12989/sem.2010.36.1.079
- Modares, M. and Mullen, R. (2014), "Dynamic analysis of structures with interval uncertainty", J. Eng. Mech., 140(4), 04013011. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000660
- Modares, M. and Mullen, R.L. (2008), "Static analysis of uncertain structures using interval eigenvalue decomposition", REC.
- Moore, R.E. (1979), "Methods and applications of interval analysis", SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA.
- Ramli, S.N.M. and Jang, J. (2014), "Neumann series on the recursive moments of copula-dependent aggregate discounted claims", Risks, 2(2), 195-210. https://doi.org/10.3390/risks2020195
- Rao, S.S. and Berke, L. (1997), "Analysis of Uncertain Structural Systems Using Interval Analysis", AIAA J., 35(4), 727-735. https://doi.org/10.2514/2.164
- Rump, S.M. (2012), "Interval arithmetic over finitely many endpoints", BIT Numer. Math., 52(4), 1059-1075. https://doi.org/10.1007/s10543-012-0384-2
- Samis, M. and Davis, G.A. (2014), "Using Monte Carlo simulation with DCF and real options risk pricing techniques to analyse a mine financing proposal", Int. J. Financ. Eng. Risk Manage., 1(3), 264-281. https://doi.org/10.1504/IJFERM.2014.058765
- Wang, C. and Qiu, Z. (2015), "Modified perturbation method for eigenvalues of structure with interval parameters", Sci. China Phys., Mech. Astronomy, 58(1), 1-9.
- Ying, Z., Wang, Y. and Zhu, Z. (2014), "Probablistic analysis of micro-film buckling with parametric uncertainty", Struct. Mech. Eng., 50(5), 697-708. https://doi.org/10.12989/sem.2014.50.5.697