DOI QR코드

DOI QR Code

부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상

Improving Microalgal Biomass Productivity and Preventing Biofouling in Floating Marine Photobioreactors via Sulfonation of Selectively Permeable Membranes

  • 김광민 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 이윤우 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 김지훈 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 박한울 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 정인재 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 박재훈 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 임상민 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 이철균 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과)
  • Kim, Kwangmin (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Lee, Yunwoo (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Kim, Z-Hun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Park, Hanwool (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Jung, Injae (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Park, Jaehoon (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Lim, Sang-Min (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
  • 투고 : 2017.05.23
  • 심사 : 2017.06.27
  • 발행 : 2017.06.30

초록

The purpose of this study was to inhibit biofouling on a selectively permeable membrane (SPM) and increase biomass productivity in marine photobioreactors (PBRs) for microalgal cultivation by chemical treatment. Surfaces of a SPM, composed of polyethylene terephthalate (PET), was sulfonated to decrease hydrophobicity through attaching negatively charged sulfonic groups. Reaction time of sulfonation was varied from 0 min to 60 min. As the reaction time increased, the water contact angle value of SPM surface was decreased from $75.5^{\circ}$ to $44.5^{\circ}$, indicating decrease of surface hydrophobicity. Furthermore, the water permeability of sulfonated SPM was increased from $5.42mL/m^2/s$ to $10.58mL/m^2/s$, which reflects higher nutrients transfer rates through the membranes, due to decreased hydrophobicity. When cultivating Tetraselmis sp. using 100-mL floating PBRs with sulfonated SPMs, biomass productivity was improved by 34% compared with the control group (non-reacted SPMs). In addition, scanning electron microscopic observation of SPMs used for cultivation clearly revealed lower degree of cell attachment on the sulfonated SPMs. These results suggest that sulfornation of a PET SPM could improve microalgal biomass productivity by increasing nutrients transfer rates and inhibiting biofouling by algal cells.

키워드

참고문헌

  1. Mata, T. M., Martins, and A. A., Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: review. Renew. Sust. Energy Rev. 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  2. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M. R., 2008, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng. 11, 100-112.
  3. Kim, K., Lee, J., Seo K., Kim M., Ha, K., and Kim. C. 2016. Enhancement of methane-water volumetric mass transfer coefficient by inhibiting bubble coalescence with electrolyte, J. Ind. Eng. Chem. 33, 326-329. https://doi.org/10.1016/j.jiec.2015.10.018
  4. Park, K. H., and Lee, C.-G. 2000. Optimization of algal photobioreactors using flashing lights, Biotechnol. Bioprocess Eng. 5, 186-190. https://doi.org/10.1007/BF02936592
  5. Kim, Z.-H., Park, H., Hong, S., Lim, S., and Lee, C.-G. 2016. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing, Biotechnol. Bioprocess Eng. 39(5), 713-723. https://doi.org/10.1007/s00449-016-1552-6
  6. Stephenson, P. G., Moore, C. M., Terry, M. J., Zubkov, M. V., and Bibby, T. S. 2011. Improving photosynthesis for algal biofules: toward a green revolution, Trends Biotechnol. 29, 615-623. https://doi.org/10.1016/j.tibtech.2011.06.005
  7. Nigam, P. S., and Singh, A., 2010. Production of liquid biofuels from renewable resources, Prog. Energy Combust. Sci. 37, 52-68.
  8. Singh, A., Olsen, S. I., and Nigram, P. S. 2011. A visible technology to generate third-generation biofuel, J. Chem. Technol. Biotechnol. 86, 1349-1353. https://doi.org/10.1002/jctb.2666
  9. Richardson, J. W., Johnson, M. D., Zhang, X., Zemke, P., Chen, W., and Hu, Q. 2013. A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability, Algal Res. 4, 96-104.
  10. Park, H., and Lee, C.-G. 2016. Theoretical calculations on the feasibility of microalgal biofuels: Utilization of marin resources could help realizaing the potential of microalgae, Biotechnol. J. 11, 1461-1470. https://doi.org/10.1002/biot.201600041
  11. Kim, Z.-H., Park, H., and Lee, C.-G. 2016. Seasona l assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactor, J. Microbiol. Biotechnol. 26, 1098-1102. https://doi.org/10.4014/jmb.1601.01031
  12. Kim, Z.-H., Park, H., Ryu, Y., Shin, D., Hong, S., Tran, H., Lim, S., and Lee, C.-G. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors, J. Appl. Phycol. 27(5), 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
  13. Lee, S., Kim, Z.-H., Oh, H., Choi, Y., Park, H., Jung, D., Kim, J., Na, Y., Lim, S., Lee, C.-G., and Lee, J., 2015. Fabric-hydrogel composite membranes for culturing microalgae in semipermeable membr ane-based photobioreactos, J. Polym. Sci. A Polym. Chem. 54, 108-114.
  14. Lee, C.-G., Kim, Z.-H., Lim, S., Seong, D., Hoh., D. 2014. Photobioreactor for mass culturing of photosynthetic microorganism, PCT/KR2014/02919.
  15. Flemming, H. C. 1997. Reverse osmosis membrane biofouling, Exp. Therm. Fluid Sci. 14, 382-391. https://doi.org/10.1016/S0894-1777(96)00140-9
  16. Roosjen, A., Norde, W., Van, H. C., and Busscher, H. J. 2006. The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation, Progr. Colloid Polym. Sci. 132, 138-144.
  17. Miura, Y., Watanabe, Y., and Satoshi, O. 2007. Membrane biofouling in pilot-scale membrane bioreactos (MBRs) treating municipal wastewater: impact of biofilm formation, Environ. Sci. Technol. 41, 632-638. https://doi.org/10.1021/es0615371
  18. Manosouri, J., Harrisson, S., and Chem,. V. 2010. Strategies for controlling biofouling in membrane filteration systems: challenges and opportunities, J. Mater. Chem. 20, 4567-4586. https://doi.org/10.1039/b926440j
  19. Kim, J., Yoo, G., Lee, H., Lim, J., Kin, K., Kim, C., Park, M., and Yang, J. 2013. Methods of downstream processing for the production of biodiesel from microalgae, Biotechnol. Adv. 31, 862-876. https://doi.org/10.1016/j.biotechadv.2013.04.006
  20. Yang. C., Chou, C., and Li, C. 2005. Antibacterial activity of N-alkylated disaccharide chitosan derivat es, Int. J. Food Microbiol. 97, 237-245. https://doi.org/10.1016/S0168-1605(03)00083-7
  21. Liu. C. X., Zhang. D. R., He, Y., Zhao, X. S., and Bai, R. 2010. Modification of membrane surface for anti-biofouling performance: effect of anti-adhesion and anti-bacteria approaches, J. Memb. Sci. 346, 121-130. https://doi.org/10.1016/j.memsci.2009.09.028
  22. Begam, K., Kabir, M. D., Rahman, M. M., Hossain, M. A., and Khan, M. A. 2013. Properties of proton exchange membranes polyethylen terephthalate (PET) films devoloped by gamma radiation induced gra fting and sulfonation technique, Phys. Mater. Chem. 1, 13-20.
  23. Kim, K., Kwon, T., Sung, B. J., and Kim, C., 2017. Effect of methane-sugar interaction on the solubility of methane in an aqueous solution, J. Colloid Interf. Sci. 500, 113-118. https://doi.org/10.1016/j.jcis.2017.04.006
  24. Kim, Z.-H., Park, H., Lee, H., and Lee, C.-G. 2016, Enhancing photon utilization efficiency for astaxanthin production from Haematococcus lacustris using a split-column photobioreactor, J. Microbiol. Biotec hnol. 26, 1285-1289. https://doi.org/10.4014/jmb.1601.01082
  25. Mchale, G., Shirtcliffe, N. J., and Newton, M. I. 2004. Contact angle hysteresis on super hydrophobic surfaces, Langmuir. 20, 10146-10149. https://doi.org/10.1021/la0486584
  26. Guan, R., Zou, H., Lu, D., Gong, C., Liu, Y., 2005. Polyethersulfone sulfonated by chlorosulfonic aicd and its membrane characteristics, Eur. Polym. J. 41, 1554-1560. https://doi.org/10.1016/j.eurpolymj.2005.01.018
  27. Lee, J., Ju, Y., Lee, W., Park, K., Kim Y., 1998. Platelet adhesion onto segmented polyurethane surfaces modified by PEO- and sulfonated PEO-containing block copolymer additives, J. Biomed. Mater. Res. A, 40, 314-323. https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<314::AID-JBM17>3.0.CO;2-L