참고문헌
- Giesy, J.P. and Kannan, K. 2002. Perfluorochemical surfactants in the environment. Environ. Sci. Technol. 36, 146A-152A. https://doi.org/10.1021/es022253t
- Harada, K.H., Yang, H.R., Moon, C.S., Hung, N.N., Hitomi, T., Inoue, K., Niisoe, T., Watanabe, T., Kamiyama, S., Takenaka, K., Kim, M.Y., Watanabe, K., Takasuga, T. and Koizumi, A. 2010. Levels of perfluorooctane sulfonate and perfluorooctanoic acid in female serum samples from Japan in 2008, Korea in 1994-2008 and Vietnam in 2007-2008. Chemosphere 79, 314-319. https://doi.org/10.1016/j.chemosphere.2010.01.027
- Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A. and Seed. J. 2007. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol. Sci. 99, 366-394. https://doi.org/10.1093/toxsci/kfm128
- Kannan, K., Tao, L., Sinclair, E., Pastva, S.D., Jude, D.J. and Giesy, J.P. 2005. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch. Environ. Contam. Toxicol. 48, 559-566. https://doi.org/10.1007/s00244-004-0133-x
- Fox, N. 2012. When, where, and how does Alzheimer's disease start? Lancet Neurol. 11, 1017-1018. https://doi.org/10.1016/S1474-4422(12)70256-9
- Reverte, I., Klein, A.B., Domingo, J.L. and Colomina, M.T. 2013. Long term effects of murine postnatal exposure to decabromodiphenylether (BDE-209) on learning and memory are dependent upon APOE polymorphism and age. Neurotoxicol. Teratol. 40, 17-27. https://doi.org/10.1016/j.ntt.2013.08.003
- Sato, I., Kawamoto, K., Nishikawa, Y., Tsuda, S., Yoshida, M., Yaegashi, K., Saito, N., Liu, W. and Jin, Y. 2009. Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J. Toxicol. Sci. 34, 569-574. https://doi.org/10.2131/jts.34.569
- Wang, X., Li, B., Zhao, W.D., Liu, Y.J., Shang, D.S., Fang, W.G. and Chen, Y.H. 2011. Perfluorooctane sulfonate triggers tight junction "opening" in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem. Biophys. Res. Commun. 410, 258-263. https://doi.org/10.1016/j.bbrc.2011.05.128
- Johansson, N., Fredriksson, A. and Eriksson, P. 2008. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 29, 160-169. https://doi.org/10.1016/j.neuro.2007.10.008
- Olney, J.W. 2002. New insights and new issues in developmental neurotoxicology. Neurotoxicology 23, 659-668. https://doi.org/10.1016/S0161-813X(01)00092-4
- Lee, H.G., Lee, Y.J, and Yang, J.H. 2012. Perfluorooctane sulfonate induces apoptosis of cerebellar granule cells via a ROS-dependent protein kinase C signaling pathway. Neurotoxicology. 33, 314-320. https://doi.org/10.1016/j.neuro.2012.01.017
- Han, M.H., Lee, D.S., Jeong, J.W., Hong, S.H., Choi, I.W., Cha, H.J., Kim, S., Kim, H.S., Park, C., Kim, G.Y., Moon, S.K., Kim, W.J., Hyun Choi, Y. 2017. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev. Res. 78, 37-48. https://doi.org/10.1002/ddr.21367
- Gao, Y., Dong, C., Yin, J., Shen, J., Tian, J. and Li, C. 2012. Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway. Cell. Mol. Neurobiol. 32, 523-529. https://doi.org/10.1007/s10571-011-9792-0
- Franklin, J.L. 2011. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid. Redox. Signal. 14, 1437-1448. https://doi.org/10.1089/ars.2010.3596
- Liu, C., Yu, K., Shi, X., Wang, J., Lam, P.K., Wu, R.S. and Zhou B. 2007. Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquat. Toxicol. 82, 135-143. https://doi.org/10.1016/j.aquatox.2007.02.006
- Slotkin, T.A., MacKillop, E.A., Melnick, R.L., Thayer, K.A. and Seidler, F.J. 2008. Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environ. Health. Perspect. 116, 716-722. https://doi.org/10.1289/ehp.11253
- Eriksen, K.T., Raaschou-Nielsen, O., Sorensen, M., Roursgaard, M., Loft, S. and Moller, P. 2010. Genotoxic potential of the perfluorinated chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in human HepG2 cells. Mutat. Res. 700, 39-43. https://doi.org/10.1016/j.mrgentox.2010.04.024
- Qian, Y., Ducatman, A., Ward, R., Leonard, S., Bukowski, V., Lan Guo, N., Shi, X., Vallyathan, V. and Castranova, V. 2010. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J. Toxicol. Environ. Health A 73, 819-836. https://doi.org/10.1080/15287391003689317
- Del Bigio, M.R., Yan, H.J., Campbell, T.M. and Peeling, J. 1999. Effect of fucoidan treatment on collagenase-induced intracerebral hemorrhage in rats. Neurol. Res. 21, 415-419. https://doi.org/10.1080/01616412.1999.11740953
- Che, N., Ma, Y. and Xin, Y. 2016. Protective role of fucoidan in cerebral ischemia-reperfusion injury through inhibition of MAPK signaling pathway. Biomol. Ther.(Seoul). doi:10.4062/biomolther.2016.098.
- Mitrasinovic, O.M. and Murphy, G.M. Jr. 2002. Accelerated phagocytosis of amyloid-beta by mouse and human microglia overexpressing the macrophage colony-stimulating factor receptor. J. Biol. Chem. 277, 29889-29896. https://doi.org/10.1074/jbc.M200868200
-
Gao, Y., Li, C., Yin, J., Shen, J., Wang, H., Wu, Y. and Jin, H. 2012. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of A
${\beta}$ peptide in rats. Environ. Toxicol. Pharmacol. 33, 304-311. https://doi.org/10.1016/j.etap.2011.12.022 - Wang, T., Zhu, M. and He, Z.Z. 2016. Low-Molecular-Weight fucoidan attenuates mitochondrial dysfunction and improves neurological outcome after traumatic brain injury in aged mice: Involvement of Sirt3. Cell. Mol. Neurobiol. 36, 1257-1268. https://doi.org/10.1007/s10571-015-0323-2
- Choi, Y.S., Eom, S.Y., Kim, I.S., Ali, S.F., Kleinman, M.T., Kim, Y.D. and Kim, H. 2016. Fucoidan extracted from Hijiki protects brain microvessel endothelial cells against diesel exhaust particle exposure-induced disruption. J. Med. Food. 19, 466-471. https://doi.org/10.1089/jmf.2015.3635