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Abstract : Fucoidan increases the chemotactic activity of peripheral blood polymorphonuclear cells (PMNs) through
interleukin (IL)-8 produced by peripheral blood mononuclear cells (PBMCs). It has been demonstrated that fucoidan
can regulate the chemotaxis of PMNs by activating F-actin polymerization. The objectives of this study are to investigate
the direct effect of fucoidan on the chemotaxis of porcine PMNs and to examine whether this effect is associated
with changes in phosphoinositide 3-kinase (PI3K) activity. The chemotactic activity of porcine PMNs was evaluated
by modified Boyden chamber assay. Akt phosphorylation activity, a main downstream of PI3K, was measured by
Western blotting assay. Fucoidan itself has no chemoattractant effect for PMNs. However, direct treatment of PMNs
with fucoidan showed higher chemotactic activity to porcine recombinant (pr) IL-8 than that of PMNs without fucoidan.
The increased chemotactic activity of fucoidan-treated PMNs to pr IL-8 was suppressed by treatment of wortmannin,
an inhibitor of PI3K. Treatment of PMNs with fucoidan also increased Akt phosphorylation level. This increase was
also suppressed by wortmannin. These results suggested that fucoidan can upregulate chemotactic activity of porcine
PMNs to IL-8, which is associated with PI3K activation.
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Introduction

Neutrophils are highly specialized cells of the innate

immune system that perform the first line of defense against

bacterial and fungal infections (25). In host defense, neutro-

phil chemotaxis is crucial step in enabling neutrophils to

migrate to sites of injury or infection, and refers to the sens-

ing and crawling of neutrophils along a chemoattractant such

as leukotriene B4 and interleukin (IL)-8 gradient (7). During

chemotaxis, neutrophils display changes of cytoskeletal

dynamics that accompanies F-actin polymerization, F-actin-

enriched pseudopodia formation, and myosin II assembly in

the leading edge (8,37).

Phosphoinositide 3-kinases (PI3K) are a family of enzymes

linked to an incredibly diverse set of key cellular functions

such as cell growth, proliferation, motility, differentiation,

survival and intracellular trafficking (11,15,29). It was reported

that phosphatidylinositol (3,4,5) triphosphate [PtdIns(3,4,5)P3]

produced by PI3K plays a central role in the cell polarization

and migration during chemotactic movement (33,36). It also

demonstrated that PI3K in macrophage and neutrophils is

required for chemotaxis of chemoattractant-mediated respira-

tory burst, and activation of Akt, a serine/threonine protein

kinase (13,22,34).

Fucoidan is sulfated polysaccharides found in the extracel-

lular matrix of brown algae. Component of a fucoidan mole-

cule includes D-galactose, D-mannose, D-xylose, L-rhamnose,

D-glucuronic acid residues, acetyl groups and sulfates (24).

Fucoidan has many potent biological activities including

anti-inflammatory (12) and antioxidant effects (23). Fucoidan

also has a variety of immunomodulatory effects. It enhances

phagocytic capacity and oxidative burst activity of periph-

eral blood polymorphonuclear cells (PMNs), which is mainly

mediated by tumor necrosis factor (TNF)-α released from

fucoidan-treated peripheral blood mononuclear cells (PBMCs)

(19). It induces activation and maturation of dendritic cells

and can promote production of interferon-γ by CD4 and CD8

T cells (16). Moreover, it was recently suggested that

fucoidan increases the chemotactic activity of canine PMNs

via IL-8 produced by PBMCs (14). It was also demonstrated

that fucoidan directly regulates the chemotaxis of canine

PMNs by activating F-actin polymerization (18). 

The objective of this study is to investigate whether

fucoidan directly regulate the chemotactic activity of porcine

PMNs and if so, whether this effect is associated with

changes in PI3K activity

Material and Methods

Chemicals and reagents

Fucoidan purified from Focus vesiculosus, RPMI 1640

medium, and wortmannin, inhibitor of PI3K, were pur-

chased commercially from Sigma-Aldrich (St. Louis, MO,

USA). The stock solution of fucoidan was prepared by dis-

solving it in phosphate buffered saline (PBS) to a final con-

centration of 20 mg/ml and passing it through a 0.45 μm
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membrane filter (Millipore Co., Bedford, MA, USA) before

use. Porcine recombinant (pr) interleukin (IL) -8 (R&D sys-

tems Inc, Minneapolis, MN, USA), primary antibodies for

Akt (rabbit anti-rh Akt polyclonal antibody (IgG)) (Santa

Cruz Biotechnology, Dallas, Texas, USA) and primary anti-

bodies for p-Akt (rabbit anti-rm pAkt polyclonal antibody

(IgG)) (Cell Signaling Technology Inc., Danvers, MA, USA)

were also purchased commercially.

PMNs isolation 

Clinically healthy 6-month-old crossbred pigs in slaughter-

house (Donga food Co. Ltd., Cheongju, Korea) were used as

blood donors. Heparinized porcine peripheral blood was

drawn from the anterior vena cava, diluted with an equal vol-

ume of phosphate-buffered saline (PBS) without calcium and

magnesium, and overlaid 1:1 on a solution (specific gravity,

1.080; Sigma-Aldrich Co.). After centrifugation at 400 g for

45 min at room temperature, the PMNs were obtained from

the upper layer of sedimented erythrocytes after the remov-

ing the PBMCs layer. To purify the PMNs, the erythrocytes

were allowed to settle for 60 min with 1.5% dextran (molec-

ular weight, 200,000; Wako Ltd., Osaka, Japan) in PBS. The

floating cells were then gently collected and pelleted by cen-

trifugation at 900 g for 5 min. The residual erythrocytes were

lysed by brief treatment with 0.83% NH4Cl in a Tris-base

buffer (pH 7.2) for 5 min. After that, PMNs were washed

three times with PBS. The viability PMNs, as determined by

trypan blue staining, always exceeded 98%. The resulting

PMNs were resuspended in RPMI 1640 medium at 37oC

under a 5% CO2-humidified atmosphere.

Chemotaxis assay 

The chemotactic activity of PMNs was determined as

migration distance through millipore membrane filters by

modified Boyden chamber assay, as previously described

(32). Briefly, the chemotaxis chamber (Neuro Probe, Gaither-

burg, MD, USA) and FBS-free RPMI 1640 medium were

pre-warmed for 2 h at 37oC. The lower chamber was filled

with 200 μl of FBS-free RPMI 1640 medium containing pr

IL-8 or fucoidan as the chemoattractant. A millipore mem-

brane filters (120 μm thick and 3.0 μm pore size; millipore

Corporation, Bedford, MA, USA) was placed on top of the

well of the lower compartment. Then, 200 μl of PMNs sus-

pension (2 × 106 cells/ml) containing fucoidan (100 and 200

μg/ml) or fucoidan (200 μg/ml) plus wortmannin (5 nM), an

inhibitor of PI3K, in a minimal volume (< 1% of the

medium) of dimethyl sulfoxide (DMSO) as the solvent was

placed in the upper compartment. The same amount of

DMSO as vehicle was added to the control well. DMSO was

also added to the lower compartment to equalize the osmotic

pressure with the compartment. The chambers were incu-

bated for 40 min at 37oC in a 5% CO2 humidified atmo-

sphere. After incubation, the membrane filters were im-

mediately removed, fixed in ethyl alcohol, dried, stained with

hematoxylin, decolorized in ethyl alcohol, and mounted on a

slide glass. The migrated distance of cells through the milli-

pore membrane filter towards the other side was measured

under a bright field microscopy at 400 × magnification. Five

randomly selected fields per filter were examined in tripli-

cate assay. The chemotactic responses of the input cells were

evaluated as the absolute distance (μm/40 min) directionally

migrated by the PMNs in response to chemoattractant.

Akt western blot analyses

Porcine PBMCs (2 × 106 cells/ml) were incubated with

fucoidan (200 μg/ml) and/or wortmannin (5 nM) to measure

the Akt activation. Cellular protein was extracted using RIPA

buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40,

0.25% sodium deoxycholate, 1 mM PMSF, 1 mM EDTA and

proteinase inhibitors). A total 40 μg of cytosolic proteins was

separated by 11% sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) and transferred to a polyvi-

nylidene fluoride transfer membrane (Perkin Elmer Co.,

Wellesley, MA, USA) in a TransBlot Cell (TE-22 Hoefer

Inc., Sanfrancisco, CA, USA) according to the manufac-

turer’s protocol. The membranes were then blocked for 1 h

with 5% skim milk (DifcoTM, Sparks, MD, USA) in phos-

phate-buffered saline (PBS) containing 0.05% Tween-20

(PBS-T). After blocking, the membranes were incubated with

in primary antibodies Akt (Santa Cruz Biotechnology, Dal-

las, Texas, USA) and p-Akt (Cell Signaling Technology Inc.,

Danvers, MA, USA) for 60 min at room temperature (RT),

followed the appropriate horseradish peroxidase-conjugated

secondary antibodies (antirabbit, 1:2000, SantaCruz Biotech-

nology) in 3% skim milk containing PBS-T for 1 h. After

washing, the blots were developed by incubation in enhanced

chemiluminescent reagent (Amersham Biosciences, Little

Chalfont, UK) and detected by ChemiDoc equipment GenG-

nome 5 (Syngene, Cambridge, UK). Signal specificity was

confirmed by blotting in the absence of primary antibody and

bands were standardized to Akt immunoreactive bands visu-

alized in the same membrane after stripping. Density mea-

surements for each band were performed with NIH Image J

software (NIH, Bethesda, MD, USA). Background samples

from an area near each lane were subtracted from each band

to obtain mean band density.

Statistical Analyses

All statistical analyses were carried out by using Graph-

Pad Prism 6 for windows (GraphPad Software Inc., San

Diego, CA, USA). Results were compared by one-way

analysis of variance (ANOVA) with Tukey’s multiple com-

parison test or two-way ANOVA with Bonferroni's post hoc

test, as appropriate. P value of under 0.05 was considered

statistically significant. Results are expressed as means ±

standard deviation (± SD).

Results

Fucoidan has no chemoattractant activity for porcine

PMNs

To examine whether fucoidan has any chemoattractant

activity for PMNs, the migrated distances of PMNs in

response to either fucoidan or pr IL-8 in the lower chamber

were measured. Pr IL-8 significantly increased (p < 0.001)

the chemotactic activity of PMNs at concentrations of 10 nM

compared with the vehicle-treated control (Fig 1). However,

the presence of fucoidan (100 and 200 μg/ml) in the lower
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chamber showed no effects on chemotaxis of PMNs as com-

pared with that of the controls.

Direct treatment of fucoidan increases the chemotactic

activity of porcine PMNs

Direct treatment effect of fucoidan on chemotactic activity

of PMNs to IL-8 was evaluated. In the absence of pr IL-8 in

the lower chamber, the migrated distances of PMNs treated

with fucoidan (100 and 200 μg/ml) were not significantly

different from that of vehicle-treated controls (Fig 2). How-

ever, the chemotactic activity of PMNs was significantly

increased (p < 0.001) by the presence of IL-8 (10 nM) in the

lower chamber. In the presence of pr IL-8, treatment with

fucoidan (100 and 200 μg/ml) significantly increased (p <

0.05 to 0.001) the chemotactic activity of PMNs compared

with that of the fucoidan-untreated PMNs (no fucoidan in the

upper chamber).

Increased chemotactic activity of fucoidan-treated

porcine PMNs in response to pr IL-8 is associated with

PI3K activation

To investigate whether the ability of fucoidan to increase

the chemotaxis of porcine PMNs in response to pr IL-8

(10 nM) is related to PI3K activation, the chemotactic activ-

ity of PMNs was examined by addition of wortmannin

(5 nM), an inhibitor of PI3K. PMNs were exposed to

fucoidan and/or wortmannin in the upper chamber for 40

min. As shown in Fig 3, in the naïve PMNs without

fucoidan, there was no significant difference in the chemot-

actic activity of PMNs by treatment of wortmannin. How-

ever, the chemotactic activity of PMNs was significantly

increased (p < 0.001) by treatment with fucoidan (200 μg/ml)

when compared with naïve PMNs. This increase in chemot-

actic activity of PMNs by fucoidan was significantly reduced

(p < 0.05) by wortmannin (5 nM). Moreover, when com-

pared with treatment of wortmannin alone, the chemotactic

Fig 1. Chemoattractant effect of fucoidan on porcine PMN

chemotaxis. Freshly isolated PMNs (2 × 106 cells/ml) were placed

in the upper chamber and pr IL-8 (10 nM) or fucoidan (100 or

200 µg/ml) was added to the lower chamber. After 40 min incu-

bation, the distance migrated by the cells through the filter was

measured. Data represent the means ± SDs (n = 3). ***P < 0.01

vs. fucoidan-untreated PMNs (one-way ANOVA followed by

Tukey’s test).

Fig 2. Chemotactic activity of porcine PMNs treated with

fucoidan. The chemotactic activity of PMNs (2 × 106 cells/ml)

treated with fucoidan (100 or 200 µg/ml) in the upper chamber

was measured in the presence or absence of pr IL-8 (10 nM) in

the lower chamber after 40 min. Data represent the means ± SDs

(n = 3). +++p < 0.001 vs. fucoidan-untreated PMNs in the absence

of IL-8 (one-way ANOVA followed by Tukey’s test); *p < 0.05,

***p < 0.001 vs. fucoidan-untreated PMNs in the presence of

IL-8 (two-sample t-test).

Fig 3. Effect of wortmannin, an inhibitor of PI3K, on the

chemotactic activity of fucoidan-treated porcine PMNs. The

chemotactic activity of isolated PMNs (2 × 106 cells/ml) treated

with fucoidan (200 µg/ml) and/or wortmannin (5 nM) in the

upper was measured after 40 min in the presence of pr IL-8

(10 nM) in the lower chamber. Two-way ANOVA was used for

statistical analysis (fucoidan treatment in the presence of wort-

mannin). Data represent the means ± SDs (n = 3). *p < 0.05, **p

< 0.01, ***p < 0.001 (two-sample t-test).
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activity of PMNs treated with fucoidan plus wortmannin also

showed a significant increase (p < 0.01).

Chemotactic activity of fucoidan-treated PMNs is

associated with increased Akt phosphorylation

To investigate whether the effect of fucoidan on chemotac-

tic activity of PMNs is associated with Akt phosphorylation,

a downstream of PI3K, Akt phosphorylation levels in PMNs

treated with fucoidan (200 μg/ml) and/or wortmannin (5

nM), an inhibitor of PI3K, were measured. Treatment with

wortmannin had no effect on Akt phosphorylation levels in

the naïve porcine PMNs (Fig 4). However, there was a sig-

nificant increase (p < 0.001) in phosphorylation levels of

fucoidan-treted PMNs compared with untreated cells. Then,

increased Akt phosphorylation in fucoidan-treated PMNs was

significantly (p < 0.01) reduced by the addition of wortman-

nin (5 nM). Wortmannin-treated PMNs showed significantly

(p < 0.01) increased Akt phosphorylation levels by treatment

with fucoidan.

Discussion

The effect of fucoidan on cell migration has been investi-

gated in several types of cells. In fucoidan-treated bladder

cancer cells or human lung cancer cells, cell growth and

migration were inhibited (6,21), whereas in osteoblasts,

chemotaxis and actin polymerization were increased by

fucoidan treatment (17). In this study, we examined whether

treatment with fucoidan directly increases the chemotactic

activity of porcine PMNs. The results showed that fucoidan

increases chemotactic activiy of PMNs in response to pr IL-

8. Furthermore, we observed that treatment of wortmannin,

PI3K inhibitor, in fucoidan-treated porcine PMNs reduces

chemotactic activity and Akt phosphorylation levels, a main

downstream of PI3K. These results suggest that increase in

chemotactic activity of PMNs to IL-8 by fucoidan is associ-

ated with PI3K activation.

Cell migration along gradient of a chemoattractive sub-

stance was known as chemotaxis. The initial step of chemot-

axis is to sense the chemoattractant and to transduce the

signal that triggers cell polarization, which involves morpho-

logical changes and the asymmetrical redistribution of multi-

ple proteins and lipids. Cell polarization enables the cell to

maintain leading edge that protrudes and the rear edge that

retracts. These pathways interact through the actin cytoskele-

ton (4).

PI3K is a key modulator of neutrophil chemotaxis, control-

ling cell polarization and the intracellular co-localization of

F-action to the leading edges (30). All four class I PI3Ks

(p110α, p110β, p110δ, and p110γ) are expressed in neutro-

phils (35). PI3Kγ, the dominant class I PI3K in neutrophil,

catalyzes the 3’-phosphorylation of phosphatidylinositol 4,5-

biphosphate [PtdIns(4,5)P2] to generate PtdIns(3,4,5)P3 (26).

Local production and degradation of PtdIns(3,4,5)P3 at the

plasma membrane result in a net accumulation of PtdIns

(3,4,5)P3 at the leading edge and leads ultimately to actin

polymerization, formation of pseudopodia and directional

cell movement (20). It is shown that recruitment of neutro-

phil to sites of inflammation was significantly reduced in

PI3Kγ knockout mice (22,31). Additionally neutrophils lack-

ing PI3Kγ exhibit strong defects in adhesion (10). Therefore,

we used wortmannin, PI3K inhibitor, to elucidate whether

fucoidan increases chemotactic activity of PMNs via PI3K

activation. The results of this study showed that the migrated

distance of PMNs is reduced by the addition of wortmannin.

Because Akt phosphorylation acts as downstream of PI3K,

the effect of fucoidan on Akt phosphorylation was also inves-

tigated. It was observed that Akt phosphorylation levels are

increased when PMNs are treated with fucoidan. The in-

creased phosphorylation level induced by treatment of

fucoidan was also suppressed by the addition of wortman-

nin. These findings suggest that the effect of fucoidan on the

chemotactic activity of PMNs in response to pr IL-8 is asso-

ciated with PI3K activation. Previous study showed that

fucoidan also stimulates total cellular F-actin polymeriza-

tion. The increased chemotactic activity of fucoidan-treated

PMNs to IL-8 was suppressed by cytochalasin D, an inhibi-

tor of F-actin polymerization (18). Based on these results, the

increasing effect of fucoidan on chemotactic activity of

PMNs to IL-8 may be associated with increasing F-actin

polymerization through PI3K activation.

It is not known whether fucoidan can directly affect the

Fig 4. Effect of wortmannin on Akt phosphorylation levels in

fucoidan-treated PMNs. Isolated PMNs (2 × 106 cells/ml) were

treated with fucoidan (200 µg/ml) and/or wortmannin (5 nM)

for 1h. Total protein (40 µg) was subjected to 11% SDS-PAGE,

followed by Western blot analysis. One-way ANOVA followed

by Tukey’s multiple comparison test was used for statistical

analysis. Data represent the means ± SDs (n = 3). **p < 0.01,

***p < 0.001 (two-sample t-test).
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neutrophil cytoskeleton. It has been reported that fucoidan

itself does not induce the migration of PMNs (14). However,

in the presence of IL-8, treatment with fuocoidan increased

the chemotactic activity of canine PMNs (18). In this study,

fucoidan increased Akt phosphorylation levels of porcine

PMNs. However, the migrated distances of PMNs were not

affected by treatment with fucoidan in the absence of pr IL-8.

Thus, fucoidan could not induce neutrophil migration with-

out chemoattractant, despite increased PI3K activity, which is

closely associated with chemotaxis. PtdIns(3,4,5)P3 pro-

duced by PI3K strongly influences cell motility via the regu-

lation of the cytoskeleton. PtdIns(3,4,5)P3 is accumulated at

sites of F-actin polymerization, causing transient pseudopod

extension (31). In the absence of chemoattractant, cells ran-

domly extend their pseudopodia, probably as self-organizing

structures (5,28). However, for chemotaxis, pseudopodia for-

mation must be biased to at the front of the cell and sup-

pressed at the back (38). In the absence of IL-8, fucoidan

presumably stimulates the intrinsic organization of the neu-

trophil cytoskeleton by PI3K activation. With this results,

pseudopodia may be also randomly extended.

F-actin polymerization during chemoattractant-stimulated

lamella extension in the human neutrophil is occurred by two

distinct pathways (7). One pathway is dependent on PI3K

activation. Downstream of this pathway is dependent on pro-

tein kinase C (PKC) and Akt. This pathway regulates the for-

mation of 70% to 80% of the F-actin in the lamella region.

The other pathway is dependent on the activation of Rho

GTPases, rho-associated coiled-coil-containing protein kinase

1 (ROCK), Src family tyrosine kinases, and nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase. This

pathway is modulated by cAMP. It is known that GTPases

activation is dependent on PI3K activation (9). In addition, it

was demonstrated that fucoidan increases oxidative burst

activity related with NADPH oxidase (19). Therefore, stimu-

latory effects of fucoidan by PI3K activation may be associ-

ated with two distinct pathways that control F-actin

polymerization. Furthermore, this effect may also be related

with the oxidative burst of PMNs.

Although neutrophils constitute the first line of defense

against infection, they have been considered one of the major

contributors to host damage in inflammatory states (1). In

addition, impaired neutrophil migration has been reported in

sepsis, leukemia, and AIDs in humans and in diabetes in rats

(2,27). It is, therefore, suggested that the direct stimulatory

effect of fucoidan on porcine PMNs may be applicable for

development of therapeutic interventions in porcine inflam-

matory disease including mastitis, ulcerative colitis, arthritis (3).

The overall results of this study support that fucoidan

directly increases the chemotactic activity of porcine PMNs

in respone to pr IL-8 by increasing Akt phosphorylation lev-

els. This suggests that fucoidan may increase chemotaxis of

porcine PMNs by upregulating PI3K activation.
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