DOI QR코드

DOI QR Code

Magnetically Driven Assemblies of γ-Fe3O4 Nanoparticles into Well-Ordered Permanent Structures

  • Byun, Myunghwan (Department of Advanced Materials Engineering, Keimyung University)
  • Received : 2017.06.07
  • Accepted : 2017.06.20
  • Published : 2017.06.28

Abstract

We report on a simple and robust route to the spontaneous assembly of well-ordered magnetic nanoparticle superstructures by irreversible evaporation of a sessile single droplet of a mixture of a ferrofluid (FF) and a nonmagnetic fluid (NF). The resulting assembled superstructures are seen to form well-packed, vertically arranged columns with diameters of $5{\sim}0.7{\mu}m$, interparticle spacings of $9{\sim}2{\mu}m$, and heights of $1.3{\sim}3{\mu}m$ The assembled superstructures are strongly dependent on both the magnitude of magnetic field and the mixing ratio of the mixture. As the magnitude of the externally applied magnetic field and the mixing ratio of the mixture increase gradually, the size and interspacing of the magnetic nanoparticle aggregations decrease. Without an externally applied magnetic field, featureless patterns are observed for the ${\gamma}-Fe_3O_4$ nanoparticle aggregations. The proposed approach may lead to a versatile, cost-effective, fast, and scalable fabrication process based on the field-induced self-assembly of magnetic nanoparticles.

Keywords

References

  1. R. E. Rosenweig, M. Zahn and R. Shumovich: J. Magn. Magn. Mater., 39 (1983) 127. https://doi.org/10.1016/0304-8853(83)90416-X
  2. A. J. Dickstein, S. Erramilli, R. E. Goldstein, D. P. Jackson and S. A. Langer: Science, 261 (1993) 1012. https://doi.org/10.1126/science.261.5124.1012
  3. M. Seul and D. Andelman: Science, 267 (1995) 476. https://doi.org/10.1126/science.267.5197.476
  4. N. E. Voicu, S. Harkema and U. Steiner: Adv. Funct. Mater., 16 (2006) 926. https://doi.org/10.1002/adfm.200500470
  5. M. D. Cowley and R. E. Rosensweig: J. Fluid Mech., 30 (1967) 671. https://doi.org/10.1017/S0022112067001697
  6. C.Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao and H. C. Yang: J. Appl. Phys., 81 (1997) 4275. https://doi.org/10.1063/1.364800
  7. F. Elias, C. Flament, J. C. Bacri and S. Neveu: J. Phys., I7 (1997) 711.
  8. C.Y. Hong, C. H. Lin, C. H. Chen, Y. P. Chiu, S.Y. Yang, H. E. Horng and H. C. Yang: J. Magn. Magn. Mater., 226-230 (2001) 1881. https://doi.org/10.1016/S0304-8853(00)00826-X
  9. J. Richardi, D. Ingert and M. P. Pileni: Phys. Rev. E, 66 (2002) 046306. https://doi.org/10.1103/PhysRevE.66.046306
  10. L. Carrillo, J. Soriano and J. Ortin: Phys. Fluids, 12 (2000) 1685. https://doi.org/10.1063/1.870419
  11. C.Y. Chen, Y. S. Yang and J. A. Miranda: Phys. Rev. E, 80 (2009) 016314. https://doi.org/10.1103/PhysRevE.80.016314
  12. H. E. Horng, C.Y. Hong, W. B. Yeung and H. C. Yang: Appl. Opt., 37 (1998) 2674. https://doi.org/10.1364/AO.37.002674
  13. S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. X. Li, J. Am. Chem. Soc., 126 (2004) 273. https://doi.org/10.1021/ja0380852
  14. J. Legrand, A. Ngo, C. Petit and M. P. Pileni: Adv. Mater., 13 (2001) 58. https://doi.org/10.1002/1521-4095(200101)13:1<58::AID-ADMA58>3.0.CO;2-A
  15. V. Germain, J. Richardi, D. Ingert and M. P. Pileni: J. Phys. Chem. B, 109 (2005) 5541. https://doi.org/10.1021/jp045675t