DOI QR코드

DOI QR Code

Mechanical Property Improvement of the H13 Tool Steel Sculptures Built by Metal 3D Printing Process via Optimum Conditions

금속 3D 프린팅 공정 최적화를 통한 H13 공구강 조형체의 기계적 특성 향상

  • Yun, Jaecheol (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Choe, Jungho (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Haengna (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Ki-Bong (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Sangsun (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Dong-Yeol (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Yong-Jin (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Chang-Woo (Metal 3D Printing Convergence Research Team, Korea Institute of Machinery & Materials (KIMM)) ;
  • Yu, Ji-Hun (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS))
  • 윤재철 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 최중호 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 이행나 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 김기봉 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 양상선 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 양동열 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 김용진 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 이창우 (한국기계연구원, M3P 융합연구단) ;
  • 유지훈 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부)
  • Received : 2017.05.26
  • Accepted : 2017.06.14
  • Published : 2017.06.28

Abstract

In this study, H13 tool steel sculptures are built by a metal 3D printing process at various laser scan speeds. The properties of commercial H13 tool steel powders are confirmed for the metal 3D printing process used: powder bed fusion (PBF), which is a selective laser melting (SLM) process. Commercial H13 powder has an excellent flowability of 16.68 s/50 g with a Hausner ratio of 1.25 and a density of $7.68g/cm^3$. The sculptures are built with dimensions of $10{\times}10{\times}10mm^3$ in size using commercial H13 tool steel powder. The density measured by the Archimedes method is $7.64g/cm^3$, similar to the powder density of $7.68g/cm^3$. The hardness is measured by Rockwell hardness equipment 5 times to obtain a mean value of 54.28 HRC. The optimum process conditions in order to build the sculptures are a laser power of 90 W, a layer thickness of $25{\mu}m$, an overlap of 30%, and a laser scan speed of 200 mm/s.

Keywords

References

  1. B. Cheng, S. Shrestha and K. Chou: Addtive Manuf., ADDMA 90 (2016) 1.
  2. M. J. Matthews, G. Guss, S. A. Khairallah, A. M. Rubenchik, P. J. Depond and W. E. King: Acta Mater., 114 (2016) 33. https://doi.org/10.1016/j.actamat.2016.05.017
  3. A. Ladewig, G. Schlick, M. Fisser, V. Schulze and U. Glatzel: Additive Manuf., 10 (2016) 1. https://doi.org/10.1016/j.addma.2016.01.004
  4. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann: Acta Mater., 117 (2016) 371. https://doi.org/10.1016/j.actamat.2016.07.019
  5. L. Parry, I. A. Ashcroft and R. D. Wildman: Additive Manuf., 12 (2016) 1. https://doi.org/10.1016/j.addma.2016.05.014
  6. P. Feng, X. Meng, J. F. Chen and L. Ye: Construct Build Mater., 93 (2015) 486. https://doi.org/10.1016/j.conbuildmat.2015.05.132
  7. D. Geldart, E. C. Abdullah, A. Hassnapour, L. C. Nwoke and I. Wouters: China Particuology, 4 (2006) 104. https://doi.org/10.1016/S1672-2515(07)60247-4
  8. R. O. GREY and J. K. Beddow: Powder Tech., 2 (1969) 323. https://doi.org/10.1016/0032-5910(69)80024-0
  9. C. J. Etti, Y. A. Yusof, N. L. Chin and S. M. Tahir: Agric. Agric. Sci. Procedia., 2 (2014) 120. https://doi.org/10.1016/j.aaspro.2014.11.018
  10. H. Y. Jung, S. J. Choi, K. G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kuhn, D. H. Kim, K. B. Kim and J. Eckert: Mater. Des., 86 (2015) 703. https://doi.org/10.1016/j.matdes.2015.07.145
  11. L. J. Jallo, M. Schoenitz, E. L. Dreizin, R. N. Dave and C. E. Johnson: Powder Tech., 204 (2010) 63. https://doi.org/10.1016/j.powtec.2010.07.017
  12. Y. Meng, S. Sugiyama and J. Yanagimoto: J. Mater. Process. Tech., 212 (2012) 1731. https://doi.org/10.1016/j.jmatprotec.2012.04.003
  13. A. J. Pinkerton and L. Li: Int. J. Adv. Manuf. Technol., 25 (2005) 471. https://doi.org/10.1007/s00170-003-1844-2
  14. D. Geldart, E. C. Abdullah and A. Verlinden: Powder Tech., 190 (2009) 70. https://doi.org/10.1016/j.powtec.2008.04.089
  15. E. C. Abdullah and D. Geldart: Powder Tech., 102 (1999) 151. https://doi.org/10.1016/S0032-5910(98)00208-3
  16. G. Petzow: Metallographic Etching, R. Koch and James A. Nelson (Ed.), AMERICAN SOCIETY FOR METALS, Metals Park (1978) 62.
  17. M. Das, V. K. Balla, D. Basu, S. Bose and A. Bandyopadhyay: Scripta Mater., 63 (2010) 438. https://doi.org/10.1016/j.scriptamat.2010.04.044
  18. G. Telasang, J. D. Majumdar, G. Padmanabham, M. Tak and I. Manna: Surf. Coat. Tech., 258 (2014) 1108. https://doi.org/10.1016/j.surfcoat.2014.07.023
  19. http://blog.naver.com/rsm6666/100136500997

Cited by

  1. Nano-mechanical Behavior of H13 Tool Steel Fabricated by a Selective Laser Melting Method pp.1543-1940, 2019, https://doi.org/10.1007/s11661-018-5024-2
  2. A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process vol.25, pp.2, 2018, https://doi.org/10.4150/KPMI.2018.25.2.137
  3. Evaluation of Strain-Rate Sensitivity of Selective Laser Melted H13 Tool Steel Using Nanoindentation Tests vol.8, pp.8, 2018, https://doi.org/10.3390/met8080589