DOI QR코드

DOI QR Code

개화형상을 모사한 가항력 돛 수납최적화

Optimization of Drag-sail Storage Inspired from Blossom Method

  • 김희경 (한국항공대학교 항공우주 및 기계공학부) ;
  • 정진원 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이건희 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이동윤 (한국항공대학교 항공우주 및 기계공학부) ;
  • 최준우 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김병규 (한국항공대학교 항공우주 및 기계공학부)
  • Kim, Heekyung (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Jung, Jinwon (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Gunhee (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Dongyun (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Choi, Junwoo (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Byungkyu (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2017.05.22
  • 심사 : 2017.06.23
  • 발행 : 2017.06.30

초록

본 논문에서는 drag-sail의 수납 효율을 높이기 위해 새로운 접기 방법인 blossom method를 제안하였다. 가항력 돛을 접을수록 두께가 늘어남에 따라 발생하는 문제점을 해결하기 위해 접히는 라인에 여유 공간(offset)을 주고, offset film 라인이 교차하는 지점에는 구멍을 뚫어 film의 일그러짐을 방지하였다. 또한, blossom method의 적용 가능성을 확인하기 위해 mylar film으로 제작하여 전개 실험을 수행하였다. Blossom method를 적용할 경우, 수납부피 대비 전개면적 비인 수납비는 1: 68.64로 기존의 가항력 돛 접기 방법인 z-fold method보다 약 1.88배 향상되었으며, 전개 실험 결과 구멍이나 jamming에 의한 손상이 없는 것을 확인하였다.

In this paper, we propose a new folding method (the blossom method) to increase storage efficiency of drag-sail. To resolve the issue caused by increase in the thickness of the sail, we allowed margin space (offset) along the folding line and made holes at the intersection of offset lines to prevent distortion of film. In addition, to verify applicability of the blossom method, we fabricated quarter of the sail by using Mylar film and conducted a deployment experiment. If the blossom method is applied, storage ratio (storage volume: deployed area) is 1: 68.64, that is approximately 1.88 times more than the z-fold method of folding sailing.

키워드

참고문헌

  1. Y. Jung, "Recent Status of International Norms Under Discussion for Outer Space Activities and Its Roles," Journal of The Society for Aerospace System Engineering, vol. 8, no. 2, pp. 1-6, 2014.
  2. United Nations. "Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space," Space Debris Mitigation Guidelines, pp. 2-4, 2010.
  3. O. R. Stohlman and V. Lappas, "Deorbitsail: a deployable sail for de-orbiting," In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1806, 2013.
  4. S. Hobbs, J. Kingston, P. Roberts, C. Juanes, R. Sewell, B. Snapir and M. Patel, "De-orbit Sail Design for Techdemosat-1," In Sixth European Conference on Space Debris, ESA/ESOC, Darmstadt, Germany, vol. 22, pp. 25, 2013.
  5. J. Kingston, S. Hobbs, P. Roberts, C. Juanes-Vallejo, F. Robinson, R. Sewell and M. Patel, "Use of $CYPRES^{TM}$ cutters with a Kevlar clamp band for hold-down and release of the Icarus De-Orbit Sail payload on TechDemoSat-1," Acta Astronautica, vol. 100, pp. 82-93, 2014. https://doi.org/10.1016/j.actaastro.2014.03.014
  6. O. R. Stohlman and V. Lappas, "Development of the Deorbitsail flight model," In Spacecraft Structures Conference, pp. 1509, 2014.
  7. A. F. Heaton, B. F. Faller and C. K. Katan, "NanoSail: D Orbital and Attitude Dynamics," In Advances in Solar Sailing, Springer Berlin Heidelberg, pp. 95-113, 2014.
  8. B. Edmondson, R. J. Lang, M. R. Morgan, S. P. Magleby and L. L. Howell, "Thick rigidly foldable structures realized by an offset panel technique," 2015.