DOI QR코드

DOI QR Code

Comparisons of Aircraft Observations and Simulation Results of Atmospheric CO2 over Coastal Basin Areas

연안 분지 지역 상공에서의 대기 중 CO2 시뮬레이션 결과와 항공 관측 사례 비교

  • Park, Changhyoun (Department of Atmospheric Environmental Sciences, Pusan National University,) ;
  • Lee, KwiOk (DMJ System, Co.) ;
  • Jung, Woo-Sik (Department of Atmospheric Environment Information Engineering, Atmospheric Environment Information Research Center, Inje University)
  • Received : 2017.04.10
  • Accepted : 2017.05.08
  • Published : 2017.06.30

Abstract

A model coupling a meteorological predictive model and a vegetation photosynthesis and respiration model was used to simulate $CO_2$ concentrations over coastal basin areas, and modeling results were estimated with aircraft observations during a massive sampling campaign. Along with the flight tracks, the model captured the meteorological variables of potential temperature and wind speed with mean bias results of $0.8^{\circ}C$, and 0.2 m/s, respectively. These results were statistically robust, which allowed for further estimation of the model's performance for $CO_2$ simulations. Two high-resolution emission data sets were adopted to determine $CO_2$ concentrations, and the results show that the model underestimated by 1.8 ppm and 0.9 ppm at higher altitude over the study areas during daytime and nighttime, respectively, on average. Overall, it was concluded that the model's $CO_2$ performance was fairly good at higher altitude over the study areas during the study period.

Keywords

References

  1. Ahmadov, R., Gerbig, C., Kretschmer, R., Koerner, S., Neininger, B., Dolman, A. J., Sarrat, C., 2007, Mesoscale covariance of transport and $CO_2$ fluxes: Evidence from observations and simulations using the WRF-Chem coupled atmosphere-biosphere model, J. Geophys. Res-Atmos., 112, D22107. https://doi.org/10.1029/2007JD008552
  2. Ahmadov, R., Gerbig, C., Kretschmer, R., Korner, S., Rodenbeck, C., Bousquet, P., Ramonet, M., 2009, Comparing high resolution WRF-Chem simulations and two global $CO_2$ transport models with coastal tower measurements of $CO_2$, Biogeosciences, 6(5), 807-817. https://doi.org/10.5194/bg-6-807-2009
  3. Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M., Garrison, J. B., 1993, Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest, Can. J. Forest. Res., 23(7), 1402-1407. https://doi.org/10.1139/x93-177
  4. Conil, S., Hall, A., 2006, Local regimes of atmospheric variability: A Case study of southern California, J. Climate., 19(17), 4308-4325. https://doi.org/10.1175/JCLI3837.1
  5. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van Dorland, R., 2008, Changes in atmospheric constituents and in radiative forcing, in: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (eds.), Climate change 2007: The physical science basis, Cambridge University Press, Cambridge, UK, 2, 129-234.
  6. Gurney, K. R., Mendoza, D. L., Zhou, Y. Y., Fischer, M. L., Miller, C. C., Geethakumar, S., Du Can, S. D., 2009, High resolution fossil fuel combustion $CO_2$ emission fluxes for the United States, Environ. Sci. Technol., 43, 5535-5541. https://doi.org/10.1021/es900806c
  7. Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y. Y., Benes, B., Abdul-Massih, M., 2012, Quantification of fossil fuel $CO_2$ emissions on the building/street scale for a large US city, Environ. Sci. Technol., 46(21), 12194-12202. https://doi.org/10.1021/es3011282
  8. IPCC, 2013, Summary for policymakers, in: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.), Climate change 2013: The physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1-27.
  9. Jamroensan, 2013, Improving bottom-up and top-down estimates of carbon fluxes in the Midwestern USA, Ph. D Thesis, University of Iowa, USA.
  10. Jung, M., Henkel, K., Herold, M., Churkina, G., 2006, Exploiting synergies of global land cover products for carbon cycle modeling, Remote. Sens. Environ., 101(4), 534-553. https://doi.org/10.1016/j.rse.2006.01.020
  11. Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X. M., Dunn, A. L., Lin, J. C., Gerbig, C., Munger, J. W., Chow, V. Y., Gottlieb, E. W., 2008, A Satellite-based biosphere parameterization for net ecosystem $CO_2$ exchange: Vegetation Photosynthesis and Respiration Model (VPRM), Global. Biogeochem. Cy., 22, GB2005.
  12. Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Petron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., Tans, P. P., 2007, An Atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci., 2007, 104, 18925-18930.
  13. Peylin, P., Rayner, P. J., Bousquet, P., Carouge, C., Hourdin, F., Heinrich, P., Ciais, P., Aerocarb contributors, 2005, Daily $CO_2$ flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology, Atmos. Chem. Phys., 5, 3173-3186. https://doi.org/10.5194/acp-5-3173-2005
  14. Pillai, D., Gerbig, C., Ahmadov, R., Rodenbeck, C., Kretschmer, R., Koch, T., Thompson, R., Neininger, B., Lavric, J. V., 2011, High-resolution simulations of atmospheric $CO_2$ over complex terrain - representing the Ochsenkopf mountain tall tower, Atmos. Chem. Phys., 11(15), 7445-7464. https://doi.org/10.5194/acp-11-7445-2011
  15. Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A., Cairns, B., Cohen, R. C., Cooper, O. R., de Gouw, J. A., Fehsenfeld, F. C., Ferrare, R. A., Fischer, M. L., Flagan, R. C., Goldstein, A. H., Hair, J. W., Hardesty, R. M., Hostetler, C. A., Jimenez, J. L., Langford, A. O., McCauley, E., McKeen, S. A., Molina, L. T., Nenes, A., Oltmans, S. J., Parrish, D. D., Pederson, J. R., Pierce, R. B., Prather, K., Quinn, P. K., Seinfeld, J. H., Senff, C. J., Sorooshian, A., Stutz, J., Surratt, J. D., Trainer, M., Volkamer, R., Williams, E. J., Wofsy, S. C., 2013, The 2010 California research at the nexus of air quality and climate change (CalNex) field study, J. Geophys. Res-Atmos., 118(11), 5830-5866. https://doi.org/10.1002/jgrd.50331
  16. Takegawa, N., Kondo, Y., Koike, M., Chen, G., Machida, T., Watai, T., Blake, D. R., Streets, D. G., Woo, J. H., Carmichael, G. R., Kita, K., Miyazaki, Y., Shirai, T., Liley, J. B., Ogawa, T., 2004, Removal of NOx and NOy in Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002, J. Geophys. Res., 109, D23S04. https://doi.org/10.1029/2003JD003868
  17. Tans, P. P., Fung, I. Y., Takahashi, T., 1990, Observational constraints on the global atmospheric $CO_2$ budget, Science, 247(4949), 1431-1438. https://doi.org/10.1126/science.247.4949.1431
  18. Turnbull, J. C., Karion, A., Fischer, M. L., Faloona, I., Guilderson, T., Lehman, S. J., Miller, B. R., Miller, J. B., Montzka, S., Sherwood, T., Saripalli, S., Sweeney, C., Tans, P. P., 2011, Assessment of fossil fuel carbon dioxide and other anthropogenic trace (1) gas emissions from airborne measurements over Sacramento, California in spring 2009, Atmos. Chem. Phys., 11, 705-721. https://doi.org/10.5194/acp-11-705-2011
  19. Ulrickson, B. L., Mass, C. F., 1990, Numerical investigation of mesoscale circulations over the Los-Angeles basin, a verification study, Mon. Weather. Rev., 118(10), 2138-2161. https://doi.org/10.1175/1520-0493(1990)118<2138:NIOMCO>2.0.CO;2
  20. Willmott, C. J., 1982, Some comments on the evaluation of model performance, B. Am. Meteorol. Soc., 63(11), 1309-1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2