References
- Grandl M and Schmitz G (2010) Fluorescent high-content imaging allows the discrimination and quantitation of E-LDL-induced lipid droplets and Ox-LDL-generated phospholipidosis in human macrophages. Cytometry A 77, 231-242
- Steinbacher P and Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5, 356-377 https://doi.org/10.3390/biom5020356
- Fedrizzi L, Lim D and Carafoli E (2008) Calcium and signal transduction. Biochem Mol Biol Educ 36, 175-180 https://doi.org/10.1002/bmb.20187
- Brini M, Cali T, Ottolini D et al (2013) Intracellular calcium homeostasis and signaling. Met Ions Life Sci 12, 119-168
- Korkiamaki T, Yla-Outinen H, Leinonen P et al (2005) The effect of extracellular calcium concentration on calciummediated cell signaling in NF1 tumor suppressor-deficient keratinocytes. Arch Dermatol Res 296, 465-472 https://doi.org/10.1007/s00403-004-0538-4
- Mak S, Sun H, Acevedo F et al (2010) Differential expression of genes in the calcium-signaling pathway underlies lesion development in the LDb mouse model of atherosclerosis. Atherosclerosis 213, 40-51 https://doi.org/10.1016/j.atherosclerosis.2010.06.038
- Xu F, Ji J, Li L et al (2007) Activation of adventitial fibroblasts contributes to the early development of atherosclerosis: a novel hypothesis that complements the "Response-to-Injury Hypothesis" and the "Inflammation Hypothesis". Med Hypotheses 69, 908-912 https://doi.org/10.1016/j.mehy.2007.01.062
- Bernatoniene J, Masteikova R, Majiene D et al (2008) Free radical-scavenging activities of Crataegus monogyna extracts. Medicina (Kaunas) 44, 706-712 https://doi.org/10.3390/medicina44090091
- Maas M, Petereit F and Hensel A (2008) Caffeic acid derivatives from Eupatorium perfoliatum L. Molecules 14, 36-45 https://doi.org/10.3390/molecules14010036
- Hicks JM, Muhammad A, Ferrier J et al (2012) Quantification of chlorogenic acid and hyperoside directly from crude blueberry (Vaccinium angustifolium) leaf extract by NMR spectroscopy analysis: single-laboratory validation. J AOAC Int 95, 1406-1411 https://doi.org/10.5740/jaoacint.11-415
- Liang N and Kitts DD (2016) Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 8, 16
- Bonita JS, Mandarano M, Shuta D et al (2007) Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol Res 55, 187-198 https://doi.org/10.1016/j.phrs.2007.01.006
- Kwon SH, Lee HK, Kim JA et al (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649, 210-217 https://doi.org/10.1016/j.ejphar.2010.09.001
-
Bogeski I, Bozem M, Sternfeld L et al (2006) Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of
$Ca^{2+}$ influx following store depletion in HEK 293 cells. Cell Calcium 40, 1-10 https://doi.org/10.1016/j.ceca.2006.03.003 - Choi KM (2016) The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis. Endocrinol Metab (Seoul) 31, 1-6 https://doi.org/10.3803/EnM.2016.31.1.1
- Matsumoto T, Kobayashi T and Kamata K (2007) Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14, 3209-3220 https://doi.org/10.2174/092986707782793899
- Schmitz G and Ruebsaamen K (2010) Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 208, 10-18 https://doi.org/10.1016/j.atherosclerosis.2009.05.029
- Diano S (2013) Role of reactive oxygen species in hypothalamic regulation of energy metabolism. Endocrinol Metab (Seoul) 28, 3-5 https://doi.org/10.3803/EnM.2013.28.1.3
- Liang GH, Park S, Kim MY et al (2010) Modulation of nonselective cation current by oxidized LDL and lysophosphatidylcholine and its inhibitory contribution to endothelial damage. Life Sci 86, 733-739 https://doi.org/10.1016/j.lfs.2010.03.005
- Chen L, Liang B, Froese DE et al (1997) Oxidative modification of low density lipoprotein in normal and hyperlipidemic patients: effect of lysophosphatidylcholine composition on vascular relaxation. J Lipid Res 38, 546-553
-
Kim MS, Hong JH, Li Q et al (2009) Deletion of TRPC3 in mice reduces store-operated
$Ca^{2+}$ influx and the severity of acute pancreatitis. Gastroenterology 137, 1509-1517 https://doi.org/10.1053/j.gastro.2009.07.042 -
Mogami H, Lloyd Mills C and Gallacher DV (1997) Phospholipase C inhibitor, U73122, releases intracellular
$Ca^{2+}$ , potentiates Ins(1,4,5)P3-mediated$Ca^{2+}$ release and directly activates ion channels in mouse pancreatic acinar cells. Biochem J 324 (Pt 2), 645-651 https://doi.org/10.1042/bj3240645 -
Ogita T, Tanaka Y, Nakaoka T et al (1997) Lysophosphatidylcholine transduces
$Ca^{2+}$ signaling via the platelet-activating factor receptor in macrophages. Am J Physiol 272, H17-24 - Burdakov D, Petersen OH and Verkhratsky A (2005) Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 38, 303-310 https://doi.org/10.1016/j.ceca.2005.06.010
- Pena F and Ordaz B (2008) Non-selective cation channel blockers: potential use in nervous system basic research and therapeutics. Mini Rev Med Chem 8, 812-819 https://doi.org/10.2174/138955708784912166
-
Plant TD and Schaefer M (2003) TRPC4 and TRPC5: receptor-operated
$Ca^{2+}$ -permeable nonselective cation channels. Cell Calcium 33, 441-450 https://doi.org/10.1016/S0143-4160(03)00055-1 - McLaughlin S and Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605-611 https://doi.org/10.1038/nature04398
- Chen N, Aleksa K, Woodland C et al (2007) The effect of N-acetylcysteine on ifosfamide-induced nephrotoxicity: in vitro studies in renal tubular cells. Transl Res 150, 51-57 https://doi.org/10.1016/j.trsl.2007.02.001
- Yamanaka T and Hishinuma A (1995) Different effects of anticancer drugs on two human thyroid cell lines with different stages of differentiation. Nihon Naibunpi Gakkai Zasshi 71, 73-86
- Liao Y, Dong S, Kiyama R et al (2013) Flos lonicerae extracts and chlorogenic acid protect human umbilical vein endothelial cells from the toxic damage of perfluorooctane sulphonate. Inflammation 36, 767-779 https://doi.org/10.1007/s10753-013-9603-5
- Salmeen A and Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7, 560-577 https://doi.org/10.1089/ars.2005.7.560
-
Wang YX and Zheng YM (2010) ROS-dependent signaling mechanisms for hypoxic
$Ca(^{2+})$ responses in pulmonary artery myocytes. Antioxid Redox Signal 12, 611-623 https://doi.org/10.1089/ars.2009.2877 -
Fearon IM (2006) OxLDL enhances L-type
$Ca^{2+}$ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production. Cardiovasc Res 69, 855-864 https://doi.org/10.1016/j.cardiores.2005.11.019 - Wang Y, Wang Y and Li GR (2016) TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget 7, 50937-50951
- Ong HL and Ambudkar IS (2015) Molecular determinants of TRPC1 regulation within ER-PM junctions. Cell Calcium 58, 376-386 https://doi.org/10.1016/j.ceca.2015.03.008
-
Yi FX, Magness RR and Bird IM (2005) Simultaneous imaging of [
$Ca^{2+}$ ]i and intracellular NO production in freshly isolated uterine artery endothelial cells: effects of ovarian cycle and pregnancy. Am J Physiol Regul Integr Comp Physiol 288, R140-148 https://doi.org/10.1152/ajpregu.00302.2004
Cited by
- Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence vol.7, pp.2, 2018, https://doi.org/10.3390/antiox7020026
- Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19041112