DOI QR코드

DOI QR Code

돈분 퇴비화 시 공기 흡입 강도에 따른 이화학적 특성변화

Changes of Physico-chemical Characteristic on Swine Manure Using Different Suction Strength in Composting System

  • 이동준 (농촌진흥청 국립축산과학원) ;
  • 김중곤 (농촌진흥청 국립축산과학원) ;
  • 정광화 (농촌진흥청 국립축산과학원) ;
  • 곽정훈 (농촌진흥청 국립축산과학원) ;
  • ;
  • 이지웅 (전남대학교 농업생명과학대학 동물자원학부)
  • Lee, Dong-Jun (National Institute of Animal Science (NIAS), RDA) ;
  • Kim, Jung Kon (National Institute of Animal Science (NIAS), RDA) ;
  • Jeong, Kwang-Hwa (National Institute of Animal Science (NIAS), RDA) ;
  • Kawg, Jung-Hoon (National Institute of Animal Science (NIAS), RDA) ;
  • Ravindran, B. (National Institute of Animal Science (NIAS), RDA) ;
  • Lee, Ji-Woong (Division of Animal Science, Chonnam National University)
  • 투고 : 2017.05.02
  • 심사 : 2017.06.09
  • 발행 : 2017.06.30

초록

본 연구는 톱밥이 수분조절재로 혼합된 돈분 퇴비화 시 공기 흡입 강도의 효과를 조사하기 위해 실시하였다. 25 L 규모의 퇴비화 반응기에 일정하게 주입되는 공기 주입량을 기준으로 공기 흡입량을 4 단계 (100%, 200%, 300%, 400%)로 구분하여 실험을 수행하였다. 모든 반응기의 온도가 퇴비화 개시 후 2일 이내에 호열성 단계에 도달하였으며 퇴비화 5일 까지 이를 유지하는 것을 관찰할 수 있었다. 이후 반응기의 온도는 점차 감소하여 퇴비화 실험이 끝날 무렵에는 외기와 비슷한 온도를 나타냈다. 초기 혼합원료의 수분함량은 64.27% 로 측정되었으며, 점차 감소하여 100%에서 38.4, 200%에서 33.08%, 300%에서 14.59% 그리고 400%에서 11.93로 나타났다. 퇴비화 기간 동안, pH는 6.83에서 8.67로 증가하였다가 점점 감소하여 100%, 200%에서 7.56, 300%에서 8.19, 400%에서 8.08로 관찰되었으며, 이는 100%와 200%의 공기 흡입강도가 타 처리구보다 퇴비화에 적합한 흡입조건인 것으로 사료된다. 퇴비화 초기 혼합 원료의 총 켈달질소 (TKN)는 2.3%로 측정되었으나, 점차 변화하여 퇴비화 종료 시점에 100%는 3.3%, 200%는 3.1%, 300%는 2.5%, 400%는 2.3%로 조사되었다. 이러한 결과는 100%, 200% 처리구가 타 처리구에 비해 $CO_2$ 발생 및 수증기 휘발로 인한 중량손실이 높기 때문인 것으로 사료된다. 퇴비화 초기 혼합원료의 C/N비는 25.17로 측정되었으며 급격히 감소하여 퇴비화 종료 시점에는 100%에서 11.88 200%에서 11.97, 300%에서 14.31, 400%에서 14.72로 조사되었으나 처리구 간 큰 차이는 발견되지 않았다. 이상의 연구 결과 양질 퇴비화를 위한 공기 주입량 대비 최적 공기 흡입 강도는 100%와 200% 처리구인 것으로 조사되었다.

The aim of this experiment was to investigate the effect of air suction rate (SR) during the composting process of swine manure mixed with sawdust used as a bulking agent. In the 25 L composting reactors, the suction rate (SR) was at four different treatment levels (100%, 200%, 300%, 400%), and were fixed on the based on constant aeration rate into the composting mixtures. The temperature reached to thermophilic phase within 2 days and it was maintained up to the $5^{th}$ day of the composting process in all reactors and then gradually decreased to room temperature at the end of the composting process. The moisture content (MC, %) of the initial mixtures was 64.27%, and it was reduced to 38.4, 33.08, 14.59 and 11.93 in the different suction rate of 100%, 200%, 300%, 400%, respectively in the end process. During the composting, the level of pH was increased from 6.83 to 8.67 and it gradually decreased to 7.56 in 100% and 200%(SR). At the same time, the pH values were reduced only up to 8.19 at 300%, and 8.08 at 400%(SR), showing that suction strengths of 100% and 200% were the better option for composting than those of 300% and 400%. The total Kjeldahl nitrogen (TKN) of initial composts mixtures was 2.3% and were changed in 3.3, 3.1, 2.5, and 2.3% at the end of the composting period from the 100%-400% (SR) variations respectively. These results also indicated that 100% and 200% (SR) were more affected by the dry mass loss as $CO_2$ and water evaporation. The initial value of C/N ratio was 25.17 and were significantly reduced to 11.88, 11.97, 14.31, and 14.72 at the end of the experiment, respectively from the 100%-400% (SR) variations. These results suggest that the suction rate (SR) of 100% and 200% relative to constant air supply would be the optimal conditions to produce high-quality compost.

키워드

참고문헌

  1. Korean Ministry of Agriculture, Food and Rural Affair, "Amount of Agricultural Production in 2014", (2015).
  2. Korean Ministry of Agriculture, Food and Rural Affair, "Yield of livestock manure in South Korea", (2016).
  3. Yun, H. B., Lee, Y. J., Kim, M. S., Lee, S. M., Lee, Y., Lee, Y. B., "Composting of Pig Manure Affected by Mixed Ratio of Sawdust and Rice Hull", Korean J. Soil Sci. Fert., 45(6), pp. 1032-1036. (2012). https://doi.org/10.7745/KJSSF.2012.45.6.1032
  4. Hong, J. H., "Characteristics of Biodegradation during Recycled Composting Process", J. of Korea Society of Urb. Environ., 1(1), pp. 17-24. (2001).
  5. Egball, B., Power, J. F., "Phosphorus and Nitrogen based Manure and Compost application : corn production and soil phosphorus", Soil sci. soc. of Am. J. 63, pp. 895-901. (1999). https://doi.org/10.2136/sssaj1999.634895x
  6. The Department of Environment of South Korea, "Standard Design for Livestock Manure Treatment Facility", (2009).
  7. Jeong, K. H., Kang, H., Kim, T. I., Park, C. H., Yang, C. B., "Effect of aeration on the Physicochemical Characteristics of Livestock Feces Compost during composting period", J. Korea Org. Res. Rec., 11(4), pp. 57-65. (2003).
  8. Kwag, J. H., Kim, J. H., Jeong, K. H., Cho, S. H., Ahn, H. K., Choi, D. Y., Jeong, M. S., Lee, S. C., Kang. H. S., Ra, C. S., "A Study on the Characteristics Using Pig Manure Under Aerobic Air Flow Rate During Composting" J. Lives. Hous. & Emv. 17(2), pp. 131-138. (2011).
  9. Lee, D. J., Kim, J. K., Jeong, K. H., Cho, W. M., Ravindran, B., "Characteristic Changes of Swine Manure by Air Suction Composting System", J. Kor. Org. Res. Rec., 24(3), pp. 63-74 (2016).
  10. Zhu, N., "Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw", J. Bio. Tech. 98, pp. 9-13. (2007). https://doi.org/10.1016/j.biortech.2005.12.003
  11. Poincelot, R. P., "The Biochemistry and Methodology of composting", The Conneticut Agricultural Experiment Station, pp. 9 (1975)
  12. Seo, M. C., So, K. H., Park, W. M., "Assays of Maturity and Antifungal Activity against Plant Pathogen during the Animal Manure Composting Process", J. Kor. Soil Sci. and Fert., 32(3), pp. 285-294. (1999).
  13. Hong, J. H., "Composting Agricultural Waste", Journal of the Korean Society for Agricultural Machinery, 26(1), pp. 67-73. (2001).
  14. Lee, J. T., Nam, Y. G., Lee, J. I., "Change of Physico-chemical Properties and Microflora of Pig Manure due to composting with some Bulking Agents", Korean journal of Soil Science and Fertilizer, 34(2), pp. 134-144. (2001).
  15. Cardenas. R. R. and Wang, L. K., "Evaluation of city refuse compost maturity : A review", Biological Wastes, 27, pp. 115-142 (1989). https://doi.org/10.1016/0269-7483(89)90039-6
  16. Mori, T., Narita, A., Amimoto, T. and Chino, M., "Composting of municipal sewage sludge mixed with rice hall," J. Soil Sci. Plant Nutr, 27(4), pp. 477-486. (1981) https://doi.org/10.1080/00380768.1981.10431303
  17. Kim, T. I., Crag, I. P., Jung, J. W., Hong, E. C., Bang, W. R., Yoom Y. H. and Yang, C. B., "Effects of Rice Hull Addition and Bin Wall Characteristics on Pig Slurry Composting Properties", J. Lives. Hous. & Emv., 10(1) pp. 47-58. (2004).
  18. Ko, H. J., Kim, K. Y., Kim, H. T., Kim, C. N., Umeda, M., "Evaluation of maturity parameters and heavy metal contents in composts made from animal manure", J. Waste Manage., 28, pp. 813-820 (2008). https://doi.org/10.1016/j.wasman.2007.05.010
  19. Nada, W. M., "Stability and maturity of maize stalks compost as affected by aeration rate, C/N ratio and moisture content", J. Soil sci. and Plan nutr., 15(3), pp. 751-764. (2015).
  20. Pare, T., Dinel, H., Schnitzer, M., Dumontet, S., "Transformations of carbon and nitrogen during composting of animal manure and shredded paper," Biol. Fertil. Soils. 26, pp. 173-178. (1998) https://doi.org/10.1007/s003740050364
  21. Bernal, M. P., Alburquerque, J. A., Moral, R., "Composting of animal manures and chemical criteria for compost maturity assessment. A review", Bio. Tech., 100(22), pp. 5444-5453. (2009). https://doi.org/10.1016/j.biortech.2008.11.027