DOI QR코드

DOI QR Code

Performance Assessment of Electrolysis Using Copper and Catalyzed Electrodes for Enhanced Nutrient Removal from Wastewater

  • Kim, Woo-Yeol (Department of Environmental Engineering, Konkuk University) ;
  • Son, Dong-Jin (Department of Advanced Technology Fusion, Konkuk University) ;
  • Yun, Chan-Young (Department of Environmental Engineering, Konkuk University) ;
  • Kim, Dae-Gun (Materials & Membranes Co., Ltd.) ;
  • Chang, Duk (Department of Environmental Engineering, Konkuk University) ;
  • Sunwoo, Young (Department of Environmental Engineering, Konkuk University) ;
  • Hong, Ki-Ho (Division of Interdisciplinary Studies, Konkuk University)
  • Received : 2017.01.19
  • Accepted : 2017.03.07
  • Published : 2017.06.30

Abstract

The performance of electrolytic processes using copper and catalyzed electrodes for enhanced nutrient removal with various catalyzers and combinations of electrodes was evaluated. The catalyzed electrodes removed more ammonia nitrogen than the copper electrode, but higher ammonia removal was achieved using a Pt/Ti anode. On the other hand, electrolysis using the Pt/Cu anode consumed less energy and cost less. During electroreduction, nitrate was better removed by a pair of copper electrodes than by the catalyzed electrodes. During electrolysis of synthetic wastewater, ammonia removal not only increased owing to direct oxidation at the anode, but was also influenced by indirect oxidation at the cathode. Platinum-coated copper and titanium cathodes actively produced oxidizers and thus removed more ammonia than a pure metal cathode. Although phosphorus was removable irrespective of the type of catalyzer, electrocoagulation using the copper electrode achieved complete removal of phosphorus in a period of less than 10 min.

Keywords

References

  1. Water Environment Federation, Nutrient Removal, WEF MOP 34, McGraw Hill Professional, (2010) 16-17.
  2. World Health Organization, Eutrophication and health, Office for Official Publications of the European Communities, (2002) 40.
  3. M.M. Dorgham, A.A. Ansari and S.S. Gill, Eds., Springer, 2014, 29-44.
  4. F. Ozyonar and B. Karagozoglu, Polish J. of Environ. Stud., 2011, 20(1), 173-179.
  5. F. Janpoor, A. Torabian and V. Khatibikamal, J. Chem. Technol. Biot., 2011, 86(8), 1113-1120. https://doi.org/10.1002/jctb.2625
  6. B.K. Korbahti, K. Artut, C. Gecgel, A. Ozer, Chem. Eng. J., 2011, 173(3), 677-688. https://doi.org/10.1016/j.cej.2011.02.018
  7. M. Miyata, I. Ihara, G. Yoshid, K. Toyod and K. Umetsu, Water Sci. Technol., 2011, 63(3), 456-461. https://doi.org/10.2166/wst.2011.243
  8. B.K. Korbahti and K. Artut, Desalination, 2010, 258(1), 219-228. https://doi.org/10.1016/j.desal.2010.03.008
  9. L. Wang, B. Wu, P. Li, B. Zhang, N. Balasubramanian and Y. Zhao, Chem. Eng. J., 2016, 284, 240-246. https://doi.org/10.1016/j.cej.2015.08.132
  10. H. Sarkka, A. Bhatnagar and M. Sillanpaa, J. Electroanal. Chem., 2015, 754, 46-56. https://doi.org/10.1016/j.jelechem.2015.06.016
  11. Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui and K. Eguchi, J. Phys. Chem. C, 2015, 119(17), 9134-9141. https://doi.org/10.1021/acs.jpcc.5b01710
  12. J.F. Su, I. Ruzybayev, I. Shah and C.P. Huang, Appl. Catal. B-Environ., 2016, 180, 199-209. https://doi.org/10.1016/j.apcatb.2015.06.028
  13. J. Shen, Y.Y. Birdja and M.T. Koper, Langmuir, 2015, 31(30), 8495-8501. https://doi.org/10.1021/acs.langmuir.5b00977
  14. I. Mickova, ASRJETS, 2015, 14(2), 233-257.
  15. M. Kobya and E. Demirbas, J. Water Process Eng., 2015, 8, 64-74. https://doi.org/10.1016/j.jwpe.2015.09.006
  16. M. Sajjad, A. Aziz, T. Jun, and K. Soo Kim, Desalin. Water Treat., 2016, 57(16), 7502-7510. https://doi.org/10.1080/19443994.2015.1025586
  17. A.K. Chopra, A.K. Sharma and V. Kumar, Arch. Appl. Sci. Res., 2011, 3(5), 191-206.
  18. G. Chen, Sep. Purif. Technol., 2004, 38(1), 11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  19. G. Tchobanoglous, H.D. Stensel, R. Tsuchihashi and F. Burton, Wastewater Engineering: Treatment and Resource Recovery, McGraw-Hill, 2014.
  20. K.H. Hong, W.Y. Kim, D.J. Son, C.Y. Yun, D. Chang, H.S. Bae and D.G. Kim, Int. J. Electrochem. Sci., 2014, 9, 3979-3989.
  21. D.J. Son, W.Y. Kim, C.Y. Yun, D. Chang, D.G. Kim, S.O. Chang, J.H. Kim, Y. Sunwoo, Y.S. Bae and K.H. Hong, Int. J. Electrochem. Sci., 2014, 9, 4548-4557.
  22. C.Y. Yun, D.G. Kim, W.Y. Kim, D.J. Son, D. Chang, J.H. Kim, Y.S. Bae, H.S. Bae, Y. Sunwoo, M.S. Kwak and K.H. Hong, Int. J. Electrochem. Sci., 2014, 9, 1522-1536.
  23. K.H. Hong, W.Y. Kim, D.S. Son, C.Y. Yun, P.Q. Sun, D. Chang, H.S. Bae, J.H. Kim, Y. Sunwoo and D.G. Kim, Int. J. Electrochem. Sci., 2013, 8, 12741-12756.
  24. D.G. Kim, W.Y. Kim, C.Y. Yun, D.J. Son, D. Chang, H.S. Bae, Y.H. Lee, Y. Sunwoo and K.H. Hong, Int. J. Electrochem. Sci., 2013, 8(7), 9835-9850.
  25. F.F. Al-Qaim, Z.H. Mussa, M.R. Othman and M.P. Abdullah, J. Hazard. Mater., 2015, 300, 387-397. https://doi.org/10.1016/j.jhazmat.2015.07.007
  26. R. Vargas, S. DIaz, L. Viele, O. NUnez, C. Borras, J. Mostany and B.R. Scharifker, Appl. Catal. B-Environ., 2014, 144, 107-111. https://doi.org/10.1016/j.apcatb.2013.06.016
  27. J. Sun, H. Lu, H. Lin, L. Du, W. Huang, H. Li and T. Cui, Sep. Purif. Technol., 2012, 88, 116-120. https://doi.org/10.1016/j.seppur.2011.12.022
  28. L. Marincic and F.B. Leitz, J. Appl. Electrochem., 1978, 8(4), 333-345. https://doi.org/10.1007/BF00612687
  29. C. Zhong, W.B. Hu and Y.F. Cheng, J. Mater. Chem. A, 2013, 1(10), 3216-3238. https://doi.org/10.1039/C2TA00607C
  30. D. Reyter, D. Belanger and L. Roue, Water res., 2010, 44(6), 1918-1926. https://doi.org/10.1016/j.watres.2009.11.037
  31. M. Li, C. Feng, Z. Zhang, Z. Shen and N. Sugiura, Electrochem. Commun., 2009, 11(10), 1853-1856. https://doi.org/10.1016/j.elecom.2009.08.001
  32. K. Bouzek, M. Paidar, A. Sadilkova and H. Bergmann, J. Appl. Electrochem., 2001, 31(11), 1185-1193. https://doi.org/10.1023/A:1012755222981
  33. D. Cirmi, R. Aydin and F. Koleli, J. Electroanal. Chem., 2015, 736, 101-106. https://doi.org/10.1016/j.jelechem.2014.10.024
  34. K.H. Hong, D. Chang, H.S. Bae, Y. Sunwoo, J.H. Kim and D.G. Kim, Int. J. Electrochem. Sci., 2013, 8, 8557-8571.
  35. APHA, AWWA and WEF, Standard Methods for the Examination of Water and Wastewater, 22nd ed., APHA, 2012.
  36. J. Chen, H. Shi and J. Lu, J. Appl. Electrochem., 2007, 37(10), 1137-1144. https://doi.org/10.1007/s10800-007-9373-6
  37. A. Giannis, M. Kalaitzakis and E. Diamadopoulos, J. Chem. Technol. Biot., 2007, 82(7), 663-671. https://doi.org/10.1002/jctb.1725
  38. C.R. Costa and P. Olivi, Electrochim. Acta, 2009, 54(7), 2046-2052. https://doi.org/10.1016/j.electacta.2008.08.033
  39. T.T.P. Nguyen, B.K.D. Do, N.N. Bui, M.A. Pham and T.V. Nguyen, ECS Transactions, 2013, 53(16), 41-52. https://doi.org/10.1149/05316.0041ecst
  40. H. Wang and J.L. Wang, J. Hazard. Mater., 2008, 154(1), 44-50. https://doi.org/10.1016/j.jhazmat.2007.09.102
  41. C.A.P. Arellano and S.S. MartInez, Int. J. Hydrogen Energ., 2007, 32(15), 3163-3169. https://doi.org/10.1016/j.ijhydene.2006.04.011