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The Geometry Descriptions of Crystallographic Groups of Sol|

Won Sok Yoo’

Abstract

The connected and simply connected four-dimensional matrix solvable Lie group Sol; is the four-dimensional geometry. A

crystallographic group of Sol; is a discrete cocompact subgroup of Sol‘} X D(4). In this paper, we geometrically describe the

crystallographic groups of Sol}.
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1. Introduction

The connected and simply connected four-dimensional
matrix Lie group

1 y =z
SOI% _{ 0 ¢ =z :x,y,z,@E]R}
0 01

is one of the four-dimensional geometries which were
classified by Filipkiewiczm, see also literature!.

Let G be a connected, simply connected Lie group.
Then Aff{ G) = GX Aut( G) is called the affine group of
G, where the group operation is given by

(9705)(}176) = (g ° a(h),aﬁ)

and Aff( G) acts on G'by
(g,O()Z =g- Q(Z)

Let G'be a connected, simply connected nilpotent Lie
group and let C be any maximal compact subgroup of
Aff(G). Then a discrete cocompact subgroup 7 of
GX C'is called a crystallographic group.

In this paper, we will consider the 4-dimensional
connected and simply connected solvable Lie group Sol;,
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and we geometrically describe the crystallographic
groups of Solj. These crystallographic groups I7

naturally project onto crystallographic groups IT of Sol®
with kernel Z .

2. Sol}-geometry

The group Sol; has the three-dimensional Heisenberg
group Nil (#=0) as its nilradical. Indeed, the derived
group of Sol{ is Nil®. On the other hand, Sol] has the
center Z(Sol}) = R (y=2z=60=0), and the quotient
turns out to be isomorphic to the three-dimensional

solvable Lie group Sol®. Therefore, we have the
following results.

Theorem 2.1 Sol; fits in the following commutative
diagram between short exact sequences:

1 1
T T
| |
R+ %, R
| |
1 R Solf Sol® 1
-1
1 R Nil® R2 1
T T -1
1 1
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The following results describe the lattices of Sol; and
the automorphisms on any lattice. These are obtained by
using the description of lattices and endomorphisms of
both Nil® and Sol?® as follows:

Theorem 2.2 (Theorem 3.1%Y). Every lattice I” of Sol}
can be generated by 7, 7, 7, and ~; with relations

oml =% bn vl = bl =1,

W% =N W =

Mg Moy

P2 -1 _
Y1 Y2 Yo YoV T V3

for some integers k. p, p, with k = 0 and N = [n,;] €
SL(2,Z) with trace > 2.
Proof. Consider the derived series of Sol: Sol{ > Nil®

> Z(Nil*). Taking intersections with I, we obtain
I'=1,>I D1,

where I is a lattice of Nil®. From the commutative
diagram (2-1), we obtain a commutative diagram
between lattices

1 1
T T

1"0/1"1 —=‘—) FO/Fl
| |
1—>f2—> o —)FQ/F2—>1

-] i

| |
L—alh —s Th —sThfilh—s1

1 1

| |
1 1

Remark that the bottom exact sequence comes from
the short exact sequence 1 — R — Nil®> - R? — 1.
Then it is well-known for example!* that such I is
generated by v, 7, 7, satisfying the relations

vl =l =1 mwl =%

for some nonzero integer k. In particular, 7, is a
generator of I', = Z and v,, 7, generate I/, = 77
Now from the middle vertical, we can choose v, € I}, so

that {~,, -+ ,7,} generates I},. We denote by 7, and ~,
the images of ~, under the projections I,— I}/ T, and
I,—1I/T respectively. Remark also that {v,7,7;}
is a generator set of I}/I}, which is a lattice of Sol®.
Because {7,,7,} generates I,/I, = Z> and 7,
generates I,/I = 7., we must have

- o= IS B A
[Vi,72]= 1, ’Y:;’Yz"Yal:’Yl V2

for some integers £;;. Let A = [¢;;]. Then it can be seen
that A € SL(2,7) with trace > 2. For details about
lattices of Sol®, we refer to references™®. On the other
hand, the conjugation by -, induces an automorphism on
I';. Because this automorphism must preserve the
relation [v,,7] = A4, it follows that ~yy,7; ' =

et “@ = ~,. Consequently, the theorem is proved.

We denote by T}, p a lattice of Sol} with presentation
in Theorem 2.2. As it can be observed easily, the
canonical projection Sol} — Sol} sends the lattice I}, yp
Sol? to a lattice of Sol® with presentation

T My

<;oﬁ152 | [;11’_72] =1, :/ﬂﬂ(?l =N N
1,2>.

77/=

We will denote this lattice of Sol® by I’y . Moreover,
I, vp NNil? is a lattice of Nil”* with presentation

I, = <'Y1.72,73| [’71,73] = [’72,73] =1, [71,')’2} = '7/};>
Therefore, we have the following results.

Theorem 2.3 The following diagram is commutative.

1 1

T T

i |
(o) —— (o)

| ]

1 —— (’)’3) —_— Fk,NYP —_— FN
[- | |

1 —— () — I —— (%) — 1

I |

1

— 1
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Theorem 2.4 (Theorem 3.21%). Let

Lenp=
[71.72] = % [%.73] = ['Yl.,'Y:s] = [72.73] = 1’>

<"/[)=’Yl."/2='}/;; | 70’717[71 — ,\/;111,}/;21,%;17 Ny Ny Po

-1 _
YR TN e

be a lattice of Sol{. Then any endomorphism ¢ on I np
is either one of the following forms:

Type (D)
(%) = 1N 275>
o) =" %, ow) =y %
Ny — Ny Na1
LL(}L+TI/>—EV
d(y3) = 4 ;
Type (I)
$(10) =% N'%s
11 N2 — ”IZU
o(v) =", o) =w ™ ™ Ay
9 Ny — Ny Ny )
—p —(——p——vv
$(5) =7 ey
Type (III)

m_ T1_ T2 do

(%) =%
o(m) =5, oln) =5 ¢(y) =1

with m #= +1,

Remark from the above theorem that the type of ¢ is
determined by the exponent of +, in the image ¢(~,). If
¢ is of type (II), then ¢* is of type (I). When ¢ is an
automorphism, the type (III) cannot occur.

Let ¢ be an endomorphism on the lattice I}, yp © Solj.
Since Sol{ is of type (R), ¢ extends uniquely to a Lie
group endomorphism of Sol{, and then induces a Lie
group endomorphism of Sol® = Sol}/ZSol}) so that
these endomorphisms commute with the canonical
projection Sol{ — Sol”. This implies that ¢ : I}, yp —
I vp induces ¢ : I'y—Ty. Therefore, we have the

following results.
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Theorem 2.5 The following diagram is commutative.

1 (73) Tinp I'y 1
¢ e s
1 (3) enp > I'nv !

Since the type of ¢ is determined by the exponent of

7, in the image ¢ (v,), it follows that ¢ and & have the
same type.

Remark 2.6 From the diagram above, we have that
d(v;) = ¢’ (73) = ~4 for some integer d. By Theorem
2.4, d is completely determined by the images ¢ (~,, and
#(7,) and hence by the images ¢(v,) and ¢(v,).

dyy * diy dyy *

. dy
Namely, if ¢(v,) = Y s and ply,) = Y Y2 Vs

—- = —dy—d, — = —dy—d.
then o(v1) = 71"y d(vy) = 410y and

d = dy,dyy — dyydy,. We will denote d by n(¢) = n(a).

Recall that Aut(Sol;) has a maximal compact
subgroup which is isomorphic to the dihedral group
D(4) of order 8, see literatures”®. A crystallographic
group of Sol] is a discrete cocompact subgroup II of
Sol} X D(4). In this case, I' = IT( Sol] is a lattice of
Solf, and I" has finite index in I7. The finite group
& = II/Iis called the holonomy group IT. A torsion-free
crystallographic of Sol] is a Bieberbach group of Sol].
Therefore, we have the following results.

Theorem 2.7 The following diagram is commutative.

1 — Sol] — Sol} x D(4) — D(4) — 1
0 1

| |

|

l— T — II —_— & — 1
Note that the canonical projection Sol{ — Sol® = Sol{
/Z(Sol}) induces a homomorphism Aut(Solj) — Aut
(Sol®), which maps isomorphically a maximal compact
subgroup of Aut(Sol]) onto a maximal compact

subgroup of Aut(Sol®) (see Theorem 2.4). Therefore, we
have the following results.
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Theorem 2.8 The following diagram between short
exact sequences is commutative.

1 1

I I

1 — Sol® —— Sol® x D(4) —— D(

I I [

1 — Sol] —— Sol} x D(4) —— D(4) —— 1

N
N2
—

T
|

— R
.
|
1

—-— B —

Theorem 2.9 Let I7 < Sol] X D(4) be a crystallo-
graphic group. Then it fits in the following commutative
diagram

1 1
| |
1 T 11 D 1
| | [=
1 r 11 B 1
| |
Z =57z
1 | 2-2)
1 1

Here IT is a crystallographic group of Sol®.

It is known from Theorem 8.2 that there are 9 kinds
of crystallographic groups of Sol®: I'y, IT,(k), IT%,
I, (k, X' ), 11,(k), II(m,k,k",n), II,(k,k'), II,(k)
and ITg(k,m). Here N& SL(2, N) of trace > 2. There
are 4 kinds of Bieberbach groups of Sol®. We recall
from Corollary 8.3 that I", and IT;} are Bieberbach
groups, and the crystallographic groups 17, (k), IT,(k),
II,(m,k,X,n), II,(k) and I (k,m) are not
Bieberbach groups. The crystallographic — groups
IT,(k,k') and IT;(k, k') become Bieberbach groups for
a particular choice of k and k. In fact, we may assume

where m=0 or 1. If m=0, then ¢,; = ¢, and ker(/— M)
Am(/+M) = Z, is generated by e, = (0,1)". If m
=1, then ¢,, —£,, = {,, and ker(/— M)/im(/+ M) is a
trivial group and hence k =0. It is known in Sect. 3[8]
that they are Bieberbach groups if and only if m=0,
k = e, and k' —k 5= 0. Thus they are not Bieberbach
groups if and only if

1.m=1,
2.m=0and k =0, or
3.m=0and k=K=e,.

Consequently, given II with T = I'y and given ' =
I, yp: any abstract group I7 fitting the diagram (2-2) is a
crystallographic group of Sol{. We can describe the
crystallographic groups of Sol] as follows: Since
I, yp C II and & has at most two generators, say «, 3,
we can choose a set of generators {~y,, vy, Vo, 3> @ 3} of
II so that IT has relations: the relations for I}, yp plus
new relations

= 7’i('Y()v 71772773)7
BB = w; (v 1o 73) (i =10,1,2,3),
= uj(fyo, YisYarY3)s @ relation r;of ©.

aye !

Here the words v; and w;, are of the forms given in
Theorem 2.4. In particular,

-1 _ _+1
QY3 =3
ﬂ%ﬂ_l :73i1'

—1 41 x Kk %
A& =% V2V

BB = % s

But we cannot choose the integers * in the above

relations completely freely. For the details, we refer to

reference!”>'%.
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