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1. Introduction
1

The connected and simply connected four-dimensional 
matrix Lie group

Sol

is one of the four-dimensional geometries which were 
classified by Filipkiewicz[1], see also literature[2].

Let  be a connected, simply connected Lie group. 
Then Aff( ) = Aut( ) is called the affine group of 

, where the group operation is given by

and Aff( ) acts on  by

.

Let  be a connected, simply connected nilpotent Lie 
group and let  be any maximal compact subgroup of 
Aff( ). Then a discrete cocompact subgroup  of 

 is called a crystallographic group.
In this paper, we will consider the 4-dimensional 

connected and simply connected solvable Lie group Sol , 
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and we geometrically describe the crystallographic 
groups of Sol . These crystallographic groups  
naturally project onto crystallographic groups  of Sol  
with kernel .

2. Sol -geometry 

The group Sol  has the three-dimensional Heisenberg 
group Nil ( ) as its nilradical. Indeed, the derived 
group of Sol  is Nil . On the other hand, Sol  has the 
center Sol ) , and the quotient 
turns out to be isomorphic to the three-dimensional 
solvable Lie group Sol . Therefore, we have the 
following results.

Theorem 2.1 Sol  fits in the following commutative 
diagram between short exact sequences:

(2-1)
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The following results describe the lattices of Sol  and 
the automorphisms on any lattice. These are obtained by 
using the description of lattices and endomorphisms of 
both Nil  and Sol  as follows:

Theorem 2.2 (Theorem 3.1[3]). Every lattice  of Sol  
can be generated by  and  with relations

for some integers  with  and 
SL(2, ) with trace > 2.

Proof. Consider the derived series of Sol : Sol   Nil  
 Z(Nil ). Taking intersections with , we obtain

where  is a lattice of Nil . From the commutative 
diagram (2-1), we obtain a commutative diagram 
between lattices

Remark that the bottom exact sequence comes from 
the short exact sequence 1   Nil     1. 
Then it is well-known for example[4] that such  is 
generated by  satisfying the relations

for some nonzero integer . In particular,  is a 
generator of  and  generate . 
Now from the middle vertical, we can choose  so 

that { } generates . We denote by  and  
the images of  under the projections  and 

 respectively. Remark also that { , , } 
is a generator set of , which is a lattice of Sol . 
Because { , } generates  and  
generates , we must have

[ , ] = 1,  = 

for some integers . Let  = [ ]. Then it can be seen 
that  SL(2, ) with trace > 2. For details about 
lattices of Sol , we refer to references[5,6]. On the other 
hand, the conjugation by  induces an automorphism on 

. Because this automorphism must preserve the 
relation [ ] = , it follows that  

. Consequently, the theorem is proved.

We denote by  a lattice of Sol  with presentation 
in Theorem 2.2. As it can be observed easily, the 
canonical projection Sol   Sol  sends the lattice  
Sol  to a lattice of Sol  with presentation

< , ,   [ , ] = 1,  = ,  = 
1,2>.

We will denote this lattice of Sol  by  . Moreover, 
Nil  is a lattice of Nil  with presentation

Therefore, we have the following results.

Theorem 2.3 The following diagram is commutative.
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Theorem 2.4 (Theorem 3.2[3]). Let

= 

be a lattice of Sol . Then any endomorphism  on  
is either one of the following forms:

Type (I) 

Type (II) 

Type (III)
 

Remark from the above theorem that the type of  is 
determined by the exponent of  in the image . If 

 is of type (II), then  is of type (I). When  is an 
automorphism, the type (III) cannot occur.

Let  be an endomorphism on the lattice   Sol . 
Since Sol  is of type ( ),  extends uniquely to a Lie 
group endomorphism of Sol , and then induces a Lie 
group endomorphism of Sol Sol / (Sol ) so that 
these endomorphisms commute with the canonical 
projection Sol   Sol . This implies that  :   

 induces . Therefore, we have the 
following results.

Theorem 2.5 The following diagram is commutative.

Since the type of  is determined by the exponent of 
 in the image , it follows that  and  have the 

same type.

Remark 2.6 From the diagram above, we have that 
   for some integer . By Theorem 

2.4,  is completely determined by the images  and 
 and hence by the images  and . 

Namely, if  and  

then  and 
 We will denote  by .

Recall that Aut(Sol ) has a maximal compact 
subgroup which is isomorphic to the dihedral group 

 of order 8, see literatures[7,8]. A crystallographic 
group of Sol  is a discrete cocompact subgroup  of 
Sol  . In this case, Sol  is a lattice of 
Sol , and  has finite index in . The finite group 

 is called the holonomy group . A torsion-free 
crystallographic of Sol  is a Bieberbach group of Sol . 
Therefore, we have the following results.

Theorem 2.7 The following diagram is commutative.

Note that the canonical projection Sol   Sol Sol
/ (Sol ) induces a homomorphism Aut(Sol )  Aut 
(Sol ), which maps isomorphically a maximal compact 
subgroup of Aut(Sol ) onto a maximal compact 
subgroup of Aut(Sol ) (see Theorem 2.4). Therefore, we 
have the following results.
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Theorem 2.8 The following diagram between short 
exact sequences is commutative.

Theorem 2.9 Let Sol   be a crystallo- 
graphic group. Then it fits in the following commutative 
diagram

(2-2)

Here  is a crystallographic group of Sol .

It is known from Theorem 8.2[6] that there are 9 kinds 
of crystallographic groups of Sol :  

 
and  Here SL(2, ) of trace > 2. There 
are 4 kinds of Bieberbach groups of Sol . We recall 
from Corollary 8.3[6,8] that  and  are Bieberbach 
groups, and the crystallographic groups   

 and  are not 
Bieberbach groups. The crystallographic groups 

 and  become Bieberbach groups for 
a particular choice of  and . In fact, we may assume

where =0 or 1. If =0, then  and ker
/im  is generated by  If 
=1, then  and ker /im  is a 
trivial group and hence . It is known in Sect. 3[8] 
that they are Bieberbach groups if and only if =0, 

 and . Thus they are not Bieberbach 
groups if and only if

 1.  = 1,  
 2.  = 0 and , or
 3.  = 0 and .
 
Consequently, given  with  =  and given  = 

 any abstract group  fitting the diagram (2-2) is a 
crystallographic group of Sol . We can describe the 
crystallographic groups of Sol  as follows: Since 

 and  has at most two generators, say , 
we can choose a set of generators { } of 

 so that  has relations: the relations for  plus 
new relations

Here the words  and  are of the forms given in 
Theorem 2.4. In particular,

But we cannot choose the integers * in the above 
relations completely freely. For the details, we refer to 
reference[7,9,10].
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