DOI QR코드

DOI QR Code

Synthetic Methods and Applications of Silicon Nanowire: A Review

  • 투고 : 2017.06.01
  • 심사 : 2017.06.25
  • 발행 : 2017.06.30

초록

In this review paper, we will discuss about the methods of synthesizing Si nanowires by Top-down and Bottom-up. Silicon nanowires have a lot of application on various fields such as Li ion batteries, solar cells, chemical and biological sensors. We will address some of the applications of silicon Nanowires.

키워드

참고문헌

  1. T. Mikolajick, A. Heinzig, J. Trommer, S. Pregl, M. Grube, G. Cuniberti, and W. M. Weber, "Silicon nanowires - a versatile technology platform", Phys. Status Solidi Rapid Res. Lett., Vol. 7, pp. 793-799, 2013. https://doi.org/10.1002/pssr.201307247
  2. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gosele, "Realization of a silicon nanowire vertical surround-gate field-cffect transistor", Small, Vol. 2, pp. 85-88, 2005.
  3. J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, "Silicon vertically integrated nanowire field effect transistors", Nano Lett., Vol. 6, pp. 973-977, 2006. https://doi.org/10.1021/nl060166j
  4. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species", Science, Vol. 293, pp. 1289-1292, 2001. https://doi.org/10.1126/science.1062711
  5. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, "Metal-assisted chemical etching of silicon: a review", Adv. Mater., Vol. 23, pp. 285-308, 2011. https://doi.org/10.1002/adma.201001784
  6. J. de Boor , N. Geyer , J. V. Wittemann, U. Gosele, and V. Schmidt, "Sub-100 nm silicon nanowires by laser interference lithography and matal-assisted etching", Nanotechnology, Vol. 21, p. 095302, 2010. https://doi.org/10.1088/0957-4484/21/9/095302
  7. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching", J. Phys. Chem. C., Vol.112, pp. 4444-4450, 2008.
  8. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, "Fabrication of single-crystalline Silicon nanowires by scratching a Silicon surface with catalytic metal particles", Adv. Funct, Mater., Vol. 16, pp. 387-394, 2006. https://doi.org/10.1002/adfm.200500392
  9. N. Brahiti, S.-A. Bouanik, and T. Hadjersi, "Metal-assisted electroless etching of silicon in aqueous $NH_4HF_2$ solution", Appl. Surf. Sci., Vol. 258, pp. 5628-5637, 2012. https://doi.org/10.1016/j.apsusc.2012.02.043
  10. H. Fang, Y. Wu, J. Zhao, and J. Zhu, "Silver catalysis in the fabrication of silicon nanowire arrays", Nanotechnology, Vol. 17, p. 3768, 2006. https://doi.org/10.1088/0957-4484/17/15/026
  11. K. Peng, Y. Wu, H. Fang , X. Zhong, Y. Xu, and J. Zhu, "Uniform, axial-orientation alignment of one-dimentional single-crystal silicon nanostructure arrays", Angew. Chem. Int. Ed., Vol. 44, pp. 2737-2742, 2005. https://doi.org/10.1002/anie.200462995
  12. S. Chattopadhyay and P. W. Bohn, "Direct-write patterning of microstructured porous silicon arrays by focused-ion-beam pt deposition and metal-assisted electroless", J. Appl. Phys., Vol. 96, pp. 6888-6894, 2004. https://doi.org/10.1063/1.1806992
  13. Y. Harada, X. Li, P. W. Bohn, and R. G. Nuzzo, "Catalytic amplification of the soft lithographic patterning of Si. nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays", J. Am. Chem. Soc., Vol. 123, pp. 8709-8717, 2001. https://doi.org/10.1021/ja010367j
  14. T. Qiu , X. L. Wu, G. G. Siu, and P. K. Chu, "Intergrowth mechanism of silicon nanowires and silver dendrites", Journal of Electronic Materials, Vol. 35, pp.1879-1884, 2006. https://doi.org/10.1007/s11664-006-0171-4
  15. K. P. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, "Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution", Chemistry-A European Journal, Vol. 12, pp. 7942-7947, 2006 . https://doi.org/10.1002/chem.200600032
  16. R. S. Wagner, W. C. Ellis, "Vapor?liquid?solid mechanism of single crystal growth", Appl. Phys. Lett., Vol. 4, pp. 89, 1964. https://doi.org/10.1063/1.1753975
  17. A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science, Vol. 279, pp. 208-211, 1998. https://doi.org/10.1126/science.279.5348.208
  18. H. Suzuki, H. Araki, M. Tosa, and T. Noda, "Formation of silicon nanowires by CVD using gold catalysts at low temperatures", Materials Transctions, Vol. 48, pp. 2202-2206, 2007. https://doi.org/10.2320/matertrans.MRA2007059
  19. W. M. Weber, G. S. Duesberg, A. P. Graham, M. Liebau, E. Unger, C. Cheze, L. Geelhaar, P. Lugli, H. Riechert, and F. Kreupl, "Silicon nanowires: catalytic growth and electrical characterization", Phys. Status Solidi B. Basic Solid State Phys., Vol. 243, pp. 3340-3345, 2006. https://doi.org/10.1002/pssb.200669138
  20. E. I. Givargizov, "Fundamental aspects of VLS growth", J. Cryst. Growth, Vol. 31, pp. 20-30, 1975. https://doi.org/10.1016/0022-0248(75)90105-0
  21. V. Schmidt, S. Senz, and U. Gosele, "Diameter dependent growth direction of epitaxial silicon nanowires", Nano Lett., Vol. 5, pp. 931-935, 2005. https://doi.org/10.1021/nl050462g
  22. B. A. Boukamp, G. C. Lesh, and R. A. Huggins, "All-solid lithium electrodes with mixed-conductor matrix", J. Electrochem. Soc., Vol. 128, pp. 725-729, 1981. https://doi.org/10.1149/1.2127495
  23. M. Ge, J. Rong, X. Fang, and C. Zhou, "Porous doped silicon nanowires for lithium ion battery anode with long cycle life", Nano lett., Vol. 12, pp. 2318-2323, 2012. https://doi.org/10.1021/nl300206e
  24. N.-S. Choi, Y. Yao, Y. Cui, and J. Cho, "One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials", J.mater. Chem., Vol. 21, pp. 9825-9840, 2011. https://doi.org/10.1039/c0jm03842c
  25. J. R. Szczech and S. Jin, "Nanostructured silicon for high capacity lithium battery anodes" Energy Environ. Sci., Vol. 4, pp. 56-72, 2011. https://doi.org/10.1039/C0EE00281J
  26. G. K. Simon and T. Goswami, "Improving anodes for lithium ion batteries", Metallurgical and Materials Transactions A, Vol. 42, pp. 231-238, 2011. https://doi.org/10.1007/s11661-010-0438-5
  27. J. Christensen and J. Newman, "A mathematical model of stress generation and fracture in lithium manganese oxide", J. Electrochem. Soc., Vol. 153, pp. A1019-A1030, 2006. https://doi.org/10.1149/1.2185287
  28. X. Zhang, A. M. Sastry, and W. Shyy, "Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles", J. Electrochem. Soc., Vol. 155, pp. A542-A552, 2008. https://doi.org/10.1149/1.2926617
  29. Y.-T. Cheng and M. W. Verbrugge, "Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation", J. Power Sources, Vol. 190, pp. 453-460, 2009. https://doi.org/10.1016/j.jpowsour.2009.01.021
  30. W. H. Woodford, Y.-M. Chiang, and W. C. Carter, "Electrochemical Shock of Intercalation Electrodes: A Fracture Mechanics Analysis" J. Electrochem. Soc., Vol. 157, pp. A1052-A1059, 2010. https://doi.org/10.1149/1.3464773
  31. D. M. Piper, Y.-M. Chiang, and W. C Carter, "Effect of compressive stress on electrochemical performance of silicon anodes", J. Electrochem. Soc., Vol. 160, pp. A77-A81, 2013.
  32. H. Kim, C.-Y. Chou, J. G. Ekerdt, and G. S. Hwang, "Structure and properties of Li-Si alloys: A first-principles study", J. Phys. Chem. C, Vol. 115, pp. 2514-2521, 2011. https://doi.org/10.1021/jp1083899
  33. K. Zhao, W. L. Wang, J. Gregoire, M. Pharr, Z. Suo, J. J. Vlassak, and E. Kaxiras, "Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study", Nano Lett., Vol. 11 pp. 2962-2967, 2011. https://doi.org/10.1021/nl201501s
  34. R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, "Impedance analysis of silicon nanowire lithium ion battery anodes", J. Phys. Chem. C, Vol. 113, pp. 11390-11398, 2009.
  35. X. Wu, Z. Wang, L. Chen, and X. Huang, "Agenhanced SEI formation on Si particles for lithium batteries", Electrochem. Commun., Vol. 5, pp. 935-939, 2003. https://doi.org/10.1016/j.elecom.2003.09.001
  36. C. K. Chan, H. Peng, G. Lin, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High performance lithium battery anodes using silicon nanowires", Nat. Nanotechnol., Vol. 3, pp. 31-35, 2008. https://doi.org/10.1038/nnano.2007.411
  37. Y. Xiao, D. Hao, H. Chen, Z. Gong, and Y. Yang, "Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries", ACS Appl. Mater. Interfaces, Vol. 5, pp. 1681-1687, 2013. https://doi.org/10.1021/am302731y
  38. K. Peng, J. Jie, W. Zhang, and S.-T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes", Appl. Phys. Lett., Vol. 93, p. 033105, 2008. https://doi.org/10.1063/1.2929373
  39. V. Chakrapani, F. Rusli, M. A. Filler, and P. A. Kohl, "Silicon nanowire anode: Improved battery life with capacity-limited cycling", J. Power Sources, Vol. 205, pp. 433-438, 2012. https://doi.org/10.1016/j.jpowsour.2012.01.061
  40. J. Nanda, M. Datta, J. T. Remillard, A. O'Neill, and P. N. Kumta. "In situ raman microscopy during discharge of a high capacity silicon-carbon composite Li-ion battery negative electrode", Electrochem. Commun., Vol. 11, pp. 235-237, 2009. https://doi.org/10.1016/j.elecom.2008.11.006
  41. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, "Silicon nanowire solar cells", Appl. Phys. Lett., Vol. 91, p. 233117, 2007. https://doi.org/10.1063/1.2821113
  42. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, "Photovoltaic measurements in single-nanowire silicon solar cells", Nano Lett., Vol. 8, pp. 710-714, 2008. https://doi.org/10.1021/nl072622p
  43. J. Zhu and Y. Cui, "Photovoltaics: more solar cells for less", Nat. Mater., Vol. 9, pp. 183-184, 2010. https://doi.org/10.1038/nmat2701
  44. X. Hua, Y. Zeng, W. Wang, and W. Shen, "Light absorption mechanism of c-Si/a-Si half-coaxial nanowire arrays for nanostructured heterojunction photovoltaics", IEEE Trans. Electron Devices, Vol. 61, pp. 4007-4013, 2014. https://doi.org/10.1109/TED.2014.2363001
  45. E. C. Garnett and P. Yang, "Silicon nanowire radial p-n junction solar cells", J. Am. Chem. Soc., Vol. 130, pp.9224-9225, 2008. https://doi.org/10.1021/ja8032907
  46. T. J. Kempa, R. W. Day, S.-K. Kim, H.-G. Park and C. M. Lieber, "Semiconductor nanowires: a platform for exploring limits and concepts for nanoenabled solar cells", Energy Environ. Sci., Vol. 6, pp. 719-733, 2013. https://doi.org/10.1039/c3ee24182c
  47. Y.-J. Lee, Y.-C. Yao, and C. H. Yang, "Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells", Opt. Express, Vol. 21, pp. A7-A14, 2013. https://doi.org/10.1364/OE.21.0000A7
  48. F. Patolsky, G. Zheng, and C. M. Lieber, "Nanowire sensors for medicine and the life sciences", Nanomedicine, Vol. 1, pp. 51-65, 2006.
  49. Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. Buddharaju, and J. Kong, "Silicon nanowire arrays for label-free detection of DNA", Anal. Chem., Vol. 79, pp. 3291-3297, 2007. https://doi.org/10.1021/ac061808q
  50. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays", Nat. Biotechnol., Vol. 23, pp. 1294-1301, 2005. https://doi.org/10.1038/nbt1138
  51. J. I. A. Rashid, J. Abdullah, N. A. Yusof, and R. Hajian, "The development of silicon nanowire as sensing material and its applications", J. Nanomater., Vol. 2013, p. ID328093, 2013.