Abstract
The paper presents a new short-term dynamic displacement estimation method based on an acceleration and a geophone sensor. The proposed method combines acceleration and velocity measurements through a real time data fusion algorithm based on Kalman filter. The proposed method can estimate the displacement of a structure without displacement sensors, which is typically difficult to be applied to earthquake or fire sites due to their requirement of a fixed rigid support. The proposed method double-integrates the acceleration measurement recursively, and corrects an accumulated integration error based on the velocity measurement, The performance of the proposed method was verified by a lab-scale test, in which displacement estimated by the proposed method are compared to a reference displacement measured by laser doppler vibrometer (LDV).
본 논문에서는 가속도계와 속도계를 활용한 단기 동적변위 산정기법을 소개한다. 본 기법에서 변위는 측정된 가속도와 속도 데이터를 칼만필터 기반 실시간 융합 알고리즘에 적용하여 추정된다. 기존 변위센서(LVDT, LDV, Vision 등)는 고정된 지지점과 설치를 위해 별도의 가설물을 필요로 했기 때문에 지진 발생 시나 해상교량 적용에 한계가 있었다. 또한 Laser/Vision 기반 센서의 경우 시야확보가 어려운 경우 활용이 제한된다. 본 기법에서는 부착식 센서인 가속도계와 속도계를 활용하기 때문에, 고정된 지지점이 필요 없을뿐더러 부착만 되면 시야확보 여부로부터 자유롭다. 따라서, 지진, 해상교량뿐만 아니라 화재 시에도 적용 가능하다. 변위추정을 위해 누적되는 가속도의 이중적분 오차는 속도 계측치로 보정되며, 실험실 규모 테스트를 통해 해당 기법을 검증하였다.