DOI QR코드

DOI QR Code

Calculation of Blast Load Including Interior Explosion Effects

실내폭발 효과를 포함한 폭발하중 산정

  • Received : 2016.11.30
  • Accepted : 2017.03.20
  • Published : 2017.06.30

Abstract

To study the behavior of structures subject to blast loads it is important to calculate the loads due to the explosives accurately, especially in the case of interior explosions. It is known that numerical method based on computational fluid dynamics can estimate relatively accurate blast load due to the interior explosion including reflection effect. However, the numerical method has disadvantages that it is difficult to model the analysis and it takes much time to analyze it. Therefore, in this study, the analytical method which can include the reflection effect of the interior explosion was studied. The target structures were set as the slabs of residential buildings subject to interior explosion that could lead to massive casualties and progressive collapses. First, the numerical method is used to investigate the interior explosion effect and the maximum deflection of the slab which was assumed to be elastic, and compared with the analytical method proposed in this study. In the proposed analytical method, we determine the weighting factor of the reflection effect using the beam theory so that the explosion load calculation method becomes more accurate.

발하중을 받는 구조물의 거동을 연구하기 위해서는 폭발물에 의한 하중을 정확히 산정하는 것이 중요하며 실내폭발의 폭발하중의 경우에는 특히 그러하다. 반사효과를 포함하는 실내폭발의 폭발하중 산정방법으로는 전산유체역학을 기반으로 한 수치해석적 방법이 비교적 정확한 폭발하중을 산정할 수 있다고 알려져 있다. 하지만 수치해석적 방법은 해석모델링이 어렵고 해석에 많은 시간이 소요되는 단점이 있다. 따라서 본 연구에서는 실내폭발에서 고려되어야 하는 여러 효과 중 대표적인 반사효과를 간단히 반영할 수 있는 해석적 폭발하중 산정방법을 연구하였다. 대상 구조물은 큰 인명피해와 연쇄붕괴를 일으킬 수 있는 실내폭발하중을 받는 주거시설의 슬래브로 설정하였다. 우선 수치해석적 방법을 이용해 실내폭발 효과와 탄성체로 가정한 슬래브의 최대 처짐을 알아보고, 이를 본 연구에서 제안하는 해석적 방법과 비교를 하였다. 제안된 해석적 방법에서는 보 이론을 적용한 반사효과의 가중치를 결정함으로써 보다 정확한 폭발하중 산정방법이 되도록 하였다.

Keywords

References

  1. Army, U.S., Navy, U.S., Force, U.A. (1990) Structures to Resist the Effects of Accidental Explosions, TM5-1300, 1400.
  2. Ansys (2011) AUTODYN Theory Manual, Century Dynamics.
  3. Biggs, J.M. (1964) Introduction to Structural Dynamics, McGrawHill, New York.
  4. Birnbaum, N.K., Francis, N.J., Gerber, B.I. (1999) Coupled Techniques for the Simulation of Fluidstructure and Impact Problems, Comput. Assist. Mech. & Eng. Sci., 6(3-4), pp.295-311.
  5. Choi, H.S., Kim, M.S., Lee, Y.H. (2012) Parameteric Study on Reinforced Concrete Columns under Blast Load, J Comput. Struct. Eng. Inst. Korea, 25(3), pp.219-226. https://doi.org/10.7734/COSEIK.2012.25.3.219
  6. Costin, N.S. (2014) Numerical Simulation of Detonation of an Explosive Atmosphere of Liquefied Petroleum Gas in a Confined Space, Def. Tech., 10(3), pp.294-297. https://doi.org/10.1016/j.dt.2014.06.008
  7. Costin, N.S. (2014) The Explosive Atmosphere Conditions Required to Carry Out An Improvised Explosive Device and Numerical Simulation of Detonation, Land Forces Acad. Rev., 19(1), p.132.
  8. Cormie, D., Mays, G., Smith, P. (2009) Blast Effects on Buildings - 2nd Ed., Thomas Telford, London, p.338.
  9. Deng, R.B., Jin, X.L. (2009) Numerical Simulation of Bridge Damage under Blast Loads, WSEAS Trans. Comput., 8(9), pp.1564-1574.
  10. Kang, K.Y., Choi, K.H., Ryu, Y.H., Choi, J.W., Lee, J.M. (2015) Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles, J. Comput. Struct. Eng. Inst. Korea, 28(2), pp.187-195. https://doi.org/10.7734/COSEIK.2015.28.2.187
  11. Karlos, V., Solomos, G. (2013) Calculation of Blast Loads for Application to Structural Components, European Comm., JRC 87200, 20
  12. Kingery, C.N., Bulmash, G. (1994) Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, Technical Report ARBRL-TR-02555, US Army Research and Development Centre.
  13. Kim, H.J., Nam, J.W., Kim, S.B., Kim, J.H., Byun, K.J. (2007) Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load, J. Korea Concr. Inst., 19(2), pp.241-250. https://doi.org/10.4334/JKCI.2007.19.2.241
  14. Koccaz, Z., Sutcu, F., Torunbalci, N. (2008) Architectural and Structural Design for Blast Resistant Buildings, The 14th World Conference on Earthquake Engineering, Beijing, China.
  15. Ngo, T., Mendis, P., Gupta, A., Ramsay, J. (2007) Blast Loading and Blast Effects on Structure - An Overview, Electron. J. Struct. Eng., 7, pp.76-91,
  16. Shi, Y., Li, Z., Hao, H. (2008) Mesh Size Effect in Numerical Simulation of Blast Wave Propagation and Interaction with Structures, Trans, Tianjin Univ., 14, pp.396-402. https://doi.org/10.1007/s12209-008-0068-9
  17. IATG (International Ammunition Technical Guideline) (2013) Formulae for Ammunition Management, UN SaferGuard, 1st edition, pp.2-6.
  18. Yi, N.H., Kim, S.B., Kim, J.H., Cho, Y.G. (2009) Behavior Analysis of Concrete Structure under Blast Loading:(I) Experiment Procedures, J. Korean Soc. Civil Eng., 29(5A), pp.557-564.