
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.3.446 ISSN(Online) 2233-4866

Manuscript received Oct. 31, 2016; accepted Mar. 27, 2017
1 Inter-university Semiconductor Research Center, Department of
Electrical Engineering, Seoul National University, Seoul 151-742, Korea
2 Department of Information and Communication Engineering, Inha
University, Incheon 22212, Korea
E-mail : chae.rhee@inha.ac.kr

Fine-scalable SPIHT Hardware Design for
Frame Memory Compression in Video Codec

Sunwoong Kim1, Ji Hun Jang2, Hyuk-Jae Lee1, and Chae Eun Rhee2

Abstract—In order to reduce the size of frame
memory or bus bandwidth, frame memory
compression (FMC) recompresses reconstructed or
reference frames of video codecs. This paper proposes
a novel FMC design based on discrete wavelet
transform (DWT) - set partitioning in hierarchical
trees (SPIHT), which supports fine-scalable
throughput and is area-efficient. In the proposed
design, multi-cores with small block sizes are used in
parallel instead of a single core with a large block size.
In addition, an appropriate pipelining schedule is
proposed. Compared to the previous design, the
proposed design achieves the processing speed which
is closer to the target system speed, and therefore it is
more efficient in hardware utilization. In addition, a
scheme in which two passes of SPIHT are merged into
one pass called merged refinement pass (MRP) is
proposed. As the number of shifters decreases and the
bit-width of remained shifters is reduced, the size of
SPIHT hardware significantly decreases. The
proposed FMC encoder and decoder designs achieve
the throughputs of 4,448 and 4,000 Mpixels/s,
respectively, and their gate counts are 76.5K and
107.8K. When the proposed design is applied to high
efficiency video codec (HEVC), it achieves 1.96%
lower average BDBR and 0.05 dB higher average
BDPSNR than the previous FMC design.

Index Terms—Embedded compression, image

compression, VLSI implementation, high efficiency
video codec (HEVC), parallel architectures

I. INTRODUCTION

Video codecs store reconstructed or reference frames
into external frame memory to execute an inter
prediction which is based on temporal correlation.
Typically, video codecs access the frame data through a
bus. The stored data are often recompressed, and thereby
reducing the frame memory size or bus bandwidth. This
method is called frame memory compression (FMC) [1-
10]. FMC reduces frame memory access costs but
requires an additional hardware. Furthermore, low
read/write latency is demanded not to affect the
processing speed of video codecs. Therefore, unlike
video codecs such as high efficiency video codec
(HEVC), low computation is important rather than high
coding efficiency in FMC. Therefore, temporal
correlation is not exploited and spatial correlation is used
restrictedly.

Recently, the resolution size is exceeding 4K UHD
(3840×2160) and video codecs require very high-
throughput. The throughput of FMC is increasing as well.
Until now, various FMC algorithms have been proposed.
Lee et al. propose a differential pulse code modulation
(DPCM) - variable length coding (VLC)-based FMC
algorithm [1]. However, this algorithm generates the
bitstream with a variable length. In addition, the
bitstream has dependence inside, and therefore the high-
throughput is not supported. To solve this problem, FMC
algorithms without VLC have been studied. Kim et al.
propose prediction and coding methods which are
effective in hardware implementation [3]. The prediction

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 447

method called hierarchical average and copy prediction
(HACP) offers high prediction accuracy using diverse
average values within a block. Moreover, the coding
method called significant bit truncation (SBT) enables
the number of the bits generated within a block to be
calculated in advance, leading to the high-throughput.
Guo et al. propose a prediction method called multi-
mode DPCM and averaging (MDA) which effectively
compresses various images. In addition, a coding method
called semi-fixed length (SFL) is proposed to predict the
bitstream length in advance, thereby achieving very high-
throughput [6]. Despite the high-throughput, HACP-SBT
and MDA-SFL only support lossless coding, and
therefore have limited applications. To support lossy
coding, the quantization method in [1] can be applied to
those algorithms. However, HACP-SBT and MDA-SFL
insert dummy bits to make the bitstream length
foreknowable. As the target compression ratio (CR)
increases, the ratio of those dummy bits in the bitstream
increases, resulting in decrease in coding efficiency.

In case that the CR and image quality are the most
important factors to consider when choosing an FMC
algorithm, lossless coding is most appropriate. It is
difficult to assure that the same FMC is used for the
video encoder and decoder. Therefore, the FMC, which
is lossy coding, may make a reference frame mismatch
between encoding and decoding, which is continuously
accumulated. For this reason, HACP-SBT and MDA-
SFL, which are used as FMC in video codecs, only
consider lossless coding. However, lossless coding
algorithms are not suitable for hardware systems. Since
the length of the bitstream generated by the lossless
coding is variable, the frame memory size and bandwidth
vary as well. Furthermore, random access on the
reference frame required by video codecs is difficult. For
example, since the bitstream having a variable length is
sequentially stored in frame memory, it is difficult to
calculate an initial memory address for each search range.
If the bitstream is discontinuously stored in frame
memory to support easy random access, the bus
utilization to access the frame memory is significantly
reduced. For example, dummy bits are inserted into the
data transfer and the burst mode of the bus protocol is not
fully utilized. This reduces the compression gain in the
bus bandwidth utilization.

Discrete wavelet transform (DWT) - set partitioning in

hierarchical trees (SPIHT) is one of lossy coding
algorithms [11]. The DWT-SPIHT achieves an accurate
target CR and supports lossless coding as well. In
addition, this algorithm is based on bit-plane coding and
effective in coding efficiency due to errors occurring in
lower bit-planes. However, the processing speed is slow
due to the dynamic processing order. In addition, existing
dependence inside bitstream and each pass interferes
with the speed. To solve this problem, various methods
including hardware architectures have been studied [5, 7,
12-15]. Kim et al. propose an SPIHT hardware design of
which throughput is about 1 bit-plane per cycle [7]. In
this design, the processing cycle is fixed regardless of the
block size, and therefore the throughput can be
continuously improved by increasing the block size.
However, this scalable throughput has some problems
with hardware implementation. First, a 2D DWT is
composed of two 1D DWTs whose transform directions
are horizontal and vertical. When the horizontal
transform ends, the vertical transform starts. Therefore,
as the block size increases, latency and temporal memory
cost increase. Second, there is a stage of transposing
coefficients to bit-planes between DWT and SPIHT,
which is implemented in memory elements. As the block
size increases, the size of the memory element
proportionally increases. Third, when the height and
width of a square block are doubled, the processing
speed increases four times. Therefore, achieving the
target system speed is difficult and the hardware
utilization decreases. Fourth, as the block size increases,
the number of bits to be coded in each pass of SPIHT
increases with each cycle. Consequently, the burden on
the packer module to shift and merge the generated bits
increases. Likewise, the complexity of the parser module
increases.

This paper proposes a DWT-SPIHT-based FMC
design that supports fine-scalable throughput and area-
efficiency. Contributions are set apart from previous
designs as follows. First, an SPIHT design that finely
increases throughput is proposed. To this end, multi-
cores with small block sizes are used in parallel instead
of the single core with a large block size. An appropriate
pipelining schedule is also proposed. Second, the number
of the passes in SPIHT is decreased to reduce the
hardware overhead that is increased by the multi-cores.
Finally, the proposed FMC design is integrated into the

448 SUNWOONG KIM et al : FINE-SCALABLE SPIHT HARDWARE DESIGN FOR FRAME MEMORY COMPRESSION IN VIDEO …

HEVC encoder system with the AXI bus, and
recompresses reconstructed/reference frames. Considering
FMC coding efficiency and hardware implementation
advantages, it is a reasonable solution to use a lossy
coding algorithm in systems where the video codec is
connected to external frame memory through a bus. The
inconsistency between the encoder and the decoder,
which is caused by the lossy coding algorithm, is
mitigated by using periodic intra frames.

The rest of this paper is organized as follows. In
Section II, the previous DWT-SPIHT algorithm is
introduced. In Sections III, a DWT-SPIHT design which
shows fine-scalable throughput is proposed. In Section
IV, an integration with the AXI-based HEVC encoder
hardware is presented. The implementation results and
compression performances of the proposed FMC design
are presented in Section V, and Section VI concludes the
paper.

II. DWT-SPIHT

This section presents the DWT-SPIHT algorithm that
is the basis of the proposed algorithm. The DWT-SPIHT
algorithm which is one of transform-based coding
algorithms encodes input pictures as shown in Fig. 1.
First of all, it executes 2D DWT on the input picture. The
2D DWT is implemented by using vertical and horizontal
1D DWTs. Wavelet transformed coefficients are
temporarily stored in memory and then transposed into
bit-plane units. The transposed bit-planes are transferred
to SPIHT from the most significant bit-plane (MSB) to
the least significant bit-plane (LSB). The bit-planes have
a spatial-orientated tree (SOT) data structure in which
coefficients that have the same spatial orientation but

different frequency band levels are connected. It is likely
that the higher band level is insignificant if the
corresponding lower band level is insignificant. This is
called the zero-tree hypothesis. Based on this hypothesis,
SPIHT represents a set which does not have any
significant bit ‘1’ by symbol ‘0’. This process, called the
significance test, is shown in (1).

, (,)

1, max{ }
()

0,

i ji j T
n

c threshold
S T

otherwise
Î

ì ³ï= í
ïî

 (1)

In (1), T and ()nS × represent a set to be tested and the

significance test on the n-th bit-plane, respectively. In

addition, ,i jc represents a coefficient at location (i, j) in

T and the threshold is set by 2n when the n-th bit-plane
is coded. If any of coefficients in T is larger than or equal
to the threshold, the significance test outputs ‘1’. The
tested set is then divided into several sub-sets and those
sub-sets are tested again. The coding efficiency of SPIHT
is depending on how many sets are represented by the
symbol ‘0’. SPIHT terminates when all the input picture
data are coded or the bitstream length meets the target bit
length (TBL). Therefore, this algorithm can achieve the
target CR exactly. Moreover, as coding proceeds from
MSB to LSB, errors occur in lower bit-planes. Therefore,
SPIHT shows high coding efficiency among various
lossy coding algorithms. Despite its many advantages,
SPIHT has a problem of slow processing speed. This is
because the conventional SPIHT codes data in dynamic
order. To solve this problem, SPIHT algorithms which
code data in fixed order have been proposed [5, 7, 12-15].
In these algorithms, coding efficiency is slightly reduced
but processing speed is significantly improved.

Up to our knowledge, the SPIHT hardware design
which shows the highest throughput in both of encoder
and decoder is the design in [7]. In this design, SPIHT is
composed of three passes: sorting pass (SP), first
refinement pass (FRP), and refinement pass (RP).
Originally, the parallel processing in SPIHT is restricted
because of two dependences: The first exists between
SPs of different frequency band levels and the second
exists between SP and FRP of the same frequency band
level. Kim et al. propose a pipelining schedule to avoid
those dependences, and therefore all passes are processed
in parallel. As a result, the encoder and decoder achieve

Fig. 1. DWT-SPIHT algorithm.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 449

high-throughput of about one bit-plane per cycle. Fig. 2
shows the pipelining schedule of the encoder design in
[7] of which the decomposition level is two. In this figure,
vertical and horizontal axes represent passes in each band
and execution time, respectively. In addition, one
rectangle and the number inside represent one cycle time
and the bit-plane number, respectively. During the first
two cycles, represented in white color, all passes do not
work in parallel to avoid the dependences. However, all
passes work in parallel from the third cycle, which is
represented in light gray color. The delayed bit-planes
are represented in dark gray color. As this design
processes about one bit-plane per cycle, regardless of the
block size, throughput can be improved by increasing the
block size. However, the required hardware resources,
such as buffers, significantly increase as the block size
increases. Moreover, hardware utilization may decrease
because a fine control of throughput is difficult.
Therefore, it is required to divide one large block into
several small blocks and process them in parallel to
achieve an area-efficient and high-throughput design.

III. THE PROPOSED SCHEMES FOR FINE-
SCALABLE SPIHT HARDWARE DESIGN

This section proposes a fine-scalable SPIHT design for
area-efficient hardware implementation.

1. Multi-core SPIHT

The parallel and pipelined method in [7] enables the

number of processing cycles to be fixed regardless of the
block size. Therefore, as the block size increases, the
number of generated bits per cycle increases,
consequently resulting in high-throughput. However, the
hardware utilization may greatly decrease depending on
the target speed or the incoming input data speed. Fig. 3
shows an example of execution in [7] in which FMC is
connected to a bus with 64 bit-width and the DWT
decomposition level is set by two. In this figure, input
data come into the FMC with the target processing speed
of 8 pixels/cycle in the burst mode. Fig. 3(a) shows the
execution of an 8×8 block while Fig. 3(b) shows that on
a 16×16 block. Gray and white squares in Fig. 3
represent sign and magnitude bit-planes, respectively,
and dotted squares represent the delayed bit-planes

presented in Fig. 2. In Fig. 3(a), input pixels with 8 bit-
width are transformed into wavelet coefficients in the 2D
DWT module and then transposed to 10 bit-planes in the
transpose module. The transposed bit-planes are
transferred to the 2D SPIHT modules. As shown in Fig. 2,
the number of cycles to encode a single 8×8 block is 12
because delayed bit-planes, corresponded to the initial
delayed two cycles, are added to avoid dependences.
Therefore, the SPIHT hardware design shows throughput
of 5.33 (=64/12) pixels/cycle when the block size used in
FMC is 8×8, which is represented by a triangle mark in
Fig. 3(c). In this case, the processing speed of SPIHT is
slower than the target speed of 8 pixels/cycle which is
represented by a square mark, and therefore the SPIHT
design cannot work on the fly. Typically, the coding unit
is a square-shaped block and its height and width values
are determined in power of 2. When the height and width
of an 8×8 block are doubled to increase the speed of

Fig. 2. Pipelining schedule of the high-throughput SPIHT
encoder in [7] of which decomposition level is two.

(a)

(b)

(c)

Fig. 3. Relationship between block size and throughput when
the DWT decomposition level is two (a) processing an 8×8
block, (b) processing a 16×16 block, (c) target speed and
processing speeds of (a) and (b).

450 SUNWOONG KIM et al : FINE-SCALABLE SPIHT HARDWARE DESIGN FOR FRAME MEMORY COMPRESSION IN VIDEO …

SPIHT, the block size becomes 16×16. As shown in Fig.
3(b), the speed of SPIHT for a 16×16 block is 21.33
(=256/12) pixels/cycle, which is represented by a cross
mark in Fig. 3(c). This speed is 2.67 times faster than the
target speed. It leads to low hardware utilization because
numerous hardware resources are exploited for the
unnecessary speedup. If two 8×8 blocks are processed in
parallel and pipelined manner, 128 (=64×2) pixels are
processed in 12 cycles. In this case, the SPIHT design
has the throughput of 10.67 pixels/cycle, which is
represented by a circle mark and becomes closer to the
target speed of 8-pixels/cycle. As a result, this design is
more efficient in hardware utilization, achieving the
required processing speed.

Fig. 4(a) shows the block diagram of the proposed
encoder design with two cores and the DWT
decomposition level of 2. This design is composed of 2D
DWT, transpose, 2D SPIHT0, 2D SPIHT1, and output
multiplexer modules. The 2D SPIHT0 and 2D SPIHT1
modules process even and odd 8×8 blocks, respectively.
Fig. 4(b) shows the timing diagram of this design. In this
figure, the horizontal axis and the number in the
rectangle represent execution time and the block number,
respectively. Five stages shown in the vertical axis
process coding blocks in pipelined manner. When input
8×8 block data come into the proposed encoder design,
the 2D DWT module transforms the data into wavelet
coefficients on the fly. The 2D DWT module transforms
each coding block during one pipe time. The generated
wavelet coefficients are then transposed to bit-planes in
the transpose module. Note that the proposed design

utilizes single 2D DWT and transpose modules, although
multi-core 2D SPIHT modules are used. Therefore, the
overall hardware cost does not increase proportionally to
the number of 2D SPIHT cores. When the pipe time for
the transpose stage is finished, the 2D SPIHT module
starts coding. The proposed SPIHT design is based on
the parallel and pipelined method in [7]. As shown in Fig.
3, a single SPIHT module processes one bit-plane per
cycle and shows the throughput of about 5.33 pixels/
cycle for an 8×8 block, which is smaller than the target
speed of 8 pixels/cycle. Therefore, bit-planes of input
8×8 block data are encoded during 2 pipe times. During
the first pipe time, upper 6 bit-planes are encoded. On the
other hand, lower 4 bit-planes and 2 delayed bit-planes
are coded during the second pipe time. Therefore, the
upper 6 bit-planes from the transpose module are directly
transferred to the 2D SPIHT module, whereas the lower
4 bit-planes are stored in internal memory, denoted as a
bit-plane buffer, and then transferred to the 2D SPIHT
core at the next pipe time. In the proposed encoder
design with dual-core SPIHT, two cores encode even and
odd blocks in parallel. The bits generated in those cores
are packed to the continuous bitstream in the packer
module. As shown in Fig. 2, a single core is composed of
many passes, and therefore the packer module includes
logics to shift and merge the generated bits. Multi-cores
simultaneously generate the packed bitstream. However,
the bitstream of one core is only outputted through the
output multiplexer because the completion times of the
two cores are different. The generated bitstream is
outputted after two pipe times in 2D SPIHT modules.
The length of the outputted bitstream varies depending
on the target CR.

Fig. 5 shows the processing orders of the proposed
design using dual-cores and quad-cores with the block
size of 8×8 and the DWT decomposition level of 2. The
number in the rectangle represents the bit-plane number.
Rectangles with numbers of -1 and -2 represent the
delayed bit-planes, and ‘B’ represents a bubble cycle. Fig.
5(a) shows the processing order when dual-cores are
used and eight pixels are inputted per cycle through a 64
bit-width bus. In this case, one pipe time is composed of
eight cycles. As shown in this figure, during six cycles of
the first pipe time, upper six bit-planes of the block0 are
encoded in the core0. During six cycles of the next pipe
time, lower four bit-planes and two delayed bit-planes of

Core Packer

Input
Pixels

Output
Bitstream

2D
DWT Transpose

Bit-plane
Buffer

6-MSB

4-LSB

2D SPIHT0 (Even 8x8 Block)

Core PackerBit-plane
Buffer

6-MSB

4-LSB

2D SPIHT1 (Odd 8x8 Block)

(a)

(b)

Fig. 4. The proposed encoder design with dual-core SPIHTs (a)
block diagram, (b) timing diagram.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 451

the block0 are coded in the core0. At the same time, six
bit-planes of the block1 are encoded in the core1. In
other words, two blocks are simultaneously encoded
since the first pipe time. The proposed scheme can be
used for more cores. Fig. 5(b) shows the processing order
when quad-cores are used. This situation occurs when 16
pixels come through a 128 bit-width bus per cycle and
one pipe time for a single 8×8 block is composed of 4
cycles. During the first three pipe times, all cores do not
work in parallel. However, quad-cores encode respective
blocks in parallel after the first three pipe times as shown
in Fig. 5(b).

Fig. 6(a) shows the block diagram of the proposed
decoder design using the dual-core SPIHT. The decoder
executes the opposite operation of the encoder. The
design is composed of two inverse SPIHT modules, 2D
iSPIHT0 and 2D iSPIHT1, the 2D inverse DWT module,
and the output multiplexer module. The dual-core 2D
iSPIHT modules, in common with the dual-core 2D
SPIHT modules, work in parallel. The 2D iSPIHT
module is composed of the pre-length calculation and
initial address generator, which calculate bitstream
addresses for each pass, the parser which uses those
addresses and parses the bitstream, and the core which
decodes the bitstream. In this module, about one bit-
plane is processed per cycle. Reconstructed wavelet
coefficients are stored in the coefficient buffer and then
transferred to the 2D iDWT module. The 2D iDWT
module executes the inverse DWT on the reconstructed
wavelet coefficients and the final pixel data are

transferred to outside. Fig. 6(b) shows the timing
schedule of the FMC decoder. In this figure, the
horizontal axis and numbers in rectangles represent
execution time and block numbers, respectively. One 2D
iSPIHT module decodes a single 8×8 block during two
pipe times and two 2D iSPIHT modules work in parallel.
When the input bitstream for a single 8×8 block read is
completed, the 2D iSPIHT module starts decoding at the
next pipe time. The input bitstreams for even and odd
blocks are alternately transferred to the 2D iSPIHT0 and
2D iSPIHT1 modules. After two pipe times, the wavelet
coefficients are reconstructed. As completion times of
two 2D iSPIHT modules are different, the reconstructed
coefficients are, in turn, transferred to the 2D iDWT
module through the output multiplexer. In the 2D iDWT
module, each 8×8 block is processed during one pipe
time. The final data from the 2D iDWT module are
continuously outputted to outside.

2. Pass Reduction Scheme

The packer of encoder and the parser of decoder use

shifters to pack and parse the bits, respectively. As the
number of passes working in parallel increases, that of
shifters used in packer and parser modules increases as
well, which has a significant impact on the total
hardware size. For example, a block with the
decomposition level of 2 has seven bands, LL2, LH2,
HL2, HH2, LH1, HL1, and HH1. The LL2 band has only

(a)

(b)

Fig. 5. Encoding process depending on the number of 2D
SPIHT cores (a) dual-cores, (b) quad-cores.

(a)

(b)

Fig. 6. The proposed decoder design with dual-core SPIHTs (a)
block diagram, (b) timing diagram.

452 SUNWOONG KIM et al : FINE-SCALABLE SPIHT HARDWARE DESIGN FOR FRAME MEMORY COMPRESSION IN VIDEO …

one pass, RP, while other six bands have three passes, SP,
FRP, and RP. Therefore, nineteen passes operate in
parallel in the FMC encoder. On the other hand, the FMC
decoder has thirty-two passes which operate in parallel
because the passes for sign bit decoding are added (RP of
the LL2 band, and RP and FRP of other six-bands) [7].
Fig. 7 shows an example of the packing operation in the
previous encoder design. Although this design
simultaneously packs bits generated in nineteen passes,
only six passes are shown in this example to reduce the
space. When the block size is 8×8, the maximum number
of generated bits in HL2 RP, HL2 FRP, HL2 SP, HL1
RP, HL1 FRP, and HL1 SP are 4, 4, 1, 16, 16, and 5,
respectively. Note that sign bits are not considered in this
example. For packing bits in the HL1 band, bits in HL1
FRP are shifted by the number of bits in HL1 RP. Then,
bits in HL1 SP are shifted by the total number of bits in
HL1 RP and HL1 FRP. By using a bit-wise OR operator,
all bits in the HL1 band are packed. Suppose that {1, 0, 1,
1}, {1, 1, 0, 1}, and {1, 0} are generated in RP, FRP, and
SP in the HL1 band, respectively. As the maximum
number of bits in the HL1 band is 37 (=16+16+5), the
bit-width of bits generated in respective passes is
extended to 37. For example, bits in RP of the HL1 band
become {1, 0, 1, 1, 0, …, 0}. As four bits are generated
in HL1 RP, the bits in HL1 FRP are right-shifted by 4
and become {0, 0, 0, 0, 1, 1, 0, 1, 0, …, 0}. The bits in
HL1 SP are right-shifted by 8 because total eight bits are
generated in HL1 RP and HL1 FRP, and therefore the set
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …, 0} is generated. The 37
bit-sized three sets are merged by using an OR operator
and the packed bitstream, {1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, …,
0}, is generated. By using the same manner, bits in the
HL2 band are packed as well. When packing processes

for the HL1 and HL2 bands are finished, the bit-width of
the packed bits is extended to 46. The generated bits in
the HL1 band are right-shifted by the number of bits in
the HL2 band, those two 46 bit-sized sets are then
merged by using an OR operator. In the same manner,
bits generated in all passes are packed. However, as the
stage goes by, the bit size to merge increases. To this end,
shifters with a large bit-width are required and therefore
numerous hardware logics are exploited. Note that
packer and parser modules of the SPIHT hardware
design in [7] have 36.6% and 22.7% of encoder and
decoder gate counts, respectively. Therefore, to reduce
the total hardware cost, it is critical to reduce the
numbers of passes and shifters.

This paper proposes a scheme to merge RP and FRP
into a single pass called merged refinement pass (MRP)
to reduce the number of passes. Previous RP and FRP
execute respective functions on pixels with different
present states. However, there is something that those
two passes have in common. First, RP and FPR use the
same threshold as shown in Fig. 2. Second, both of them
apply the significance test on each pixel, not on a set. As
one pixel is only tested in one pass depending on the
present state, RP and FRP for the pixel do not work
simultaneously. Therefore, those two passes are merged
and the operation is determined depending on the present
state. By using the proposed scheme, the number of
encoder passes decreases from 19 to 13, and that of
decoder passes decreases from 32 to 20.

Fig. 8 shows the modified logics when the proposed
scheme is applied to the example in Fig. 7. As the
number of passes decreases to two-thirds, that of shifters
decreases as well. In addition, bit-widths of remained
shifters are reduced. As a result, the size of SPIHT

Fig. 7. Packing of HL coefficients in the previous method in
which the size of block is 8×8 and the DWT decomposition
level is two.

Fig. 8. Packing of HL coefficients in the proposed method.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 453

hardware logics significantly decreases. Especially, the
decrease of hardware logics is proportional to the number
of multi-SPIHT cores. The proposed pass reduction
scheme does not influence coding efficiency. However,
the logic path in one pass becomes longer because the
MRP logic is more complex than the RP or FRP logic.
However, this path is not the critical path of the overall
system, but rather the critical path, which is in the packer
module, becomes shorter.

IV. INTEGRATION WITH HEVC ENCODER

This section presents the overall system when the
proposed FMC hardware design is integrated with the
AXI-based HEVC encoder. The proposed system
compresses YUV 4:2:0 data with 8 bit-width. The bit-
width of the AXI bus connected to the FMC encoder and
decoder is 64 and the maximum burst length (BL) is 16.
Fig. 9 shows the block diagram of the overall
architecture. The FMC encoder and decoder are located
between the HEVC encoder and the AXI bus, and
communicate with the AXI bus using the same protocol
which is previously utilized. The FMC encoder encodes
data when the HEVC writes reconstructed frames to
frame memory. On the other hand, the FMC decoder
decodes the bitstream when the HEVC reads reference
frames from the frame memory.

The FMC encoder receives 64 bits per cycle from the
HEVC encoder. As the AXI bus uses a burst transferring
protocol, 64 bits×BL-sized input data are continuous.
The bitstream generated by the FMC encoder is
transferred to frame memory using the BL determined
depending on the target CR of the FMC. Fig. 10 shows
examples of the changed BLs. In this example, the
HEVC encoder sends 16 BL-sized data to the FMC
encoder. As shown in Fig. 10(a), the 16 BL-sized data

correspond with two 8×8 block Y data. The CR is
defined as

 (1) 100 .

Total bits after compressionCR

Total bits before compression
= - ´ (2)

Fig. 10(b) shows BLs when the encoded bitstream is

transferred from the FMC encoder to frame memory
through the AXI bus. BLs corresponding to target CRs of
25.0%, 37.5%, and 50.0% are 12, 10, and 8, respectively.
It means that the bandwidth on the AXI bus, to which
other IPs are also connected, is reduced. Note that
compressed data may reduce the size of frame memory
as well because the size of the encoded bitstream is fixed.
When the FMC decoder receives read requests with the
BL of 16 from the HEVC encoder, it transfers read
requests with the changed BL depending on the target
CR to frame memory. The bitstream from frame memory
is decoded by the FMC decoder, and the decoded pixels
are transferred to the HEVC encoder using the original
BL, 16.

V. EXPERIMENTAL RESULTS

This section shows hardware implementation results of
the proposed design. In addition, compression
performance results are presented when the proposed
design is integrated with HEVC.

1. Hardware Implementation

The proposed design codes an 8×8 block and the DWT

decomposition level is set by 2. Input eight pixels come
into the FMC encoder per cycle and the dual-cores

Fig. 9. Overall architecture.

(a)

(b)

Fig. 10. Burst length of the single transfer (a) between FMC
and HEVC, (b) between AXI bus and FMC.

454 SUNWOONG KIM et al : FINE-SCALABLE SPIHT HARDWARE DESIGN FOR FRAME MEMORY COMPRESSION IN VIDEO …

presented in Section III.1 are used. The proposed
hardware design is targeted for ASIC implementation. To
this end, the Verilog model is simulated and synthesized
with the 65 nm TSMC technology library but without the
place and route operations. Table 1 shows the maximum
throughput results of the proposed hardware design. The
first column represents respective FMC modules, and the
second and third columns represent the maximum
frequency and the maximum throughput, respectively.
The maximum frequency of the FMC encoder is 556
MHz. As 64 pixels are processed in each pipe stage
during 8 cycles, the maximum throughput is 4,448
Mpixels/s, which is shown in the second row of Table 1.
However, when the 2D SPIHT hardware is only
considered, 64 pixels are processed during 12 cycles and
dual-cores are used. Therefore, the maximum throughput
is 5,931 Mpixels/s as shown in the third row of Table 1.
In the FMC decoder, the maximum frequency is 500
MHz, and therefore the maximum throughput is 4,000
Mpixels/s as shown in the fourth row. The processing
cycle in the 2D iSPIHT is one cycle longer than that in
the 2D SPIHT because the sign bit decoding is delayed
[7]. Therefore, the maximum throughput of the dual-core
2D iSPIHT is 4,923 Mpixels/s, which is shown in the last
row of Table 1.

Table 2 shows gate count and memory size results of
the proposed hardware design. The gate count of the
proposed encoder hardware is 76.5K, which accounts for

41.51% of the total FMC gate count. The gate count of
the single-core of 2D SPIHT is 25.1K and that of the
dual-core hardware accounts for 65.62% of the overall
encoder gate count. All internal memory in the encoder
hardware is used for the bit-plane buffer. Along with the
core, two same 256-bit memory elements are exploited
for dual encoding. The gate count of the proposed
decoder hardware is 107.8K, which accounts for 58.49%
of the total FMC gate count. The reason why the gate
count of the decoder is larger than that of the encoder is
that the complexity of the 2D iDWT module is higher
than that of the 2D DWT module and the number of
passes in the 2D iSPIHT is larger than that in the 2D
SPIHT. The proposed decoder uses dual-cores and the
gate count of these modules accounts for 79.41% of that
of the overall decoder hardware. As all buffers in the
decoder hardware are implemented in registers, the total
memory size of the decoder hardware is zero.

The gate count change results by the pass reduction
scheme presented in Section III.2 is shown in Table 3.
The second column shows gate count results when the
proposed pass reduction scheme is not used (pass
organization in [7] is used), while the third column
shows gate count results when the proposed pass
reduction scheme is used. In the single-core of 2D
SPIHT, the proposed scheme reduces 4.6K gates which
account for 15.49%. Especially, 2.8K gates are reduced
in the packer module in which many shifters with a large
bit-width are used. On the other hand, 6.3K gates which
account for 12.83% are reduced in the single-core of 2D
iSPIHT by the proposed scheme. In the parser module
which is included in the single-core of 2D iSPIHT, 3.0K
gates are reduced.

Table 4 shows hardware implementation results of the
‘16×8-single’ design, which is based on Kim et al. [7]
and codes a 16×8 block, and the proposed design, which
codes two 8×8 blocks using dual-cores. For fair
comparison depending on block sizes, the proposed pass

Table 1. Maximum throughput of the proposed SPIHT
hardware design

Module Maximum frequency
(MHz)

Throughput
(Mpixels/s)

Total 556 4,448 Encoder
2D SPIHT Only 556 5,931

Total 500 4,000 Decoder
2D iSPIHT Only 500 4,923

Table 2. Gate count and memory size of the proposed hardware
design

Module Gate count
(Kgate)

Memory
(bit)

Total 184.3 512
Total 76.5 512

Encoder 2D DWT
Transpose (Bit-plane Buffer)

2D SPIHT

12.5
13.8
25.1

-
(64×4)×2

-
Total 107.8 0

Decoder 2D iDWT
2D iSPIHT

22.2
42.8

-
-

Table 3. Gate count change by the pass reduction scheme

Gate count (Kgate)
Module w/o Pass reduction

scheme [7]
w/ Pass reduction

scheme
Total 29.7 25.1 Single-core of

2D SPIHT Packer 20.3 17.5
Total 49.1 42.8 Single-core of

2D iSPIHT Parser 14.2 11.2

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 455

reduction scheme presented in Section III.2 is applied to
the 16×8-single design and the same synthesizing
environment is used. The second row of Table 4 shows
normalized throughput results of 2D SPIHT hardware
designs. The 16×8-single design and the proposed design
process the same number of pixels, 16×8 pixels and
8×8×2 pixels, and therefore throughputs of those designs
are same. The third row shows gate count results. Gate
counts of the 16×8-single encoder and decoder designs
are 117.8K and 146.1K, respectively. On the other hand,
gate counts of the proposed encoder and decoder are
76.5K and 107.8K, which are 41.3K and 38.3K smaller
than those of the previous encoder and decoder designs,
respectively. The fourth row shows results of which gate
counts are divided by the normalized throughput of 2D
SPIHT, which represents hardware area results
normalized to the throughput. The results of the 16×8-
single encoder and decoder are 11.0 and 14.9 Kgate×
cycle/pixel, respectively, which are 1.55 times and 1.35
times larger than those of the proposed design. These
results show that the proposed design is more efficient in
hardware area than the previous design which simply
increases the block size to improve throughput. Note that

the 2D DWT module in the 16×8-single design requires
longer latency than the proposed design because the
width of 16×8 block is larger than that of the proposed
design. Moreover, the transpose module which
transposes coefficients into bit-planes requires longer
latency as well. The last row of Table 4 shows internal
memory size results. The 16×8-single design and the
proposed design use one 16×8×4-bit memory and two
8×8×4-bit memory, respectively, which means that the
total internal memory sizes are same.

2. Compression Performance

This section presents compression performance results

when the proposed method is applied to the HEVC. For
the experiment, the HM13.0 reference software with the
low delay P main configuration is used. As test
sequences, two Class A (2560×1600), five Class B
(1920×1080), and four Class E (1280×720) sequences
with the 4:2:0 YUV format are used. In all test sequences,
the number of frames is 30 and the first frame is I-frame
while other frames are P-frames. Table 5 shows BDBR
and BDPSNR results when MDA-SFL [6], 16×8-single
SPIHT [7], and proposed algorithm are used as FMC. All
algorithms use two target CRs, 25.0% and 50.0%.
Results of the MDA-SFL in Table 5 are evaluated by
using a software simulation. Originally, the MDA-SFL is
a lossless coding algorithm, and therefore fixing the
target CR is impossible. However, the iterative
quantization method in [1] is applied to the MDA-SFL
for comparison. In other words, when the bitstream
length is larger than the TBL, a higher quantization level

Table 4. Comparison between single and dual-core SPIHT
hardware designs

16×8-single [7] Proposed
(8×8-dual)

enc. dec. enc. dec.
Norm. throughput (pixel/cycle) 10.7 9.8 10.7 9.8

Gate counts (Kgate) 117.8 146.1 76.5 107.8
Gate counts/norm. throughput

(Kgate×cycle/pixel) 11.0 14.9 7.1 11.0

Memory (bit) 512 0 512 0

Table 5. BDBR(%) and BDPSNR(dB) performance of the previous and proposed methods

BDBR (%) / BDPSNR (dB)
8×8 MDA-SFL [6] 16×8 single [7] Proposed (8×8-dual) Test sequence

CR = 25.0% CR = 50.0% CR = 25.0% CR = 50.0% CR = 25.0% CR = 50.0%
Traffic

PeopleOnStreet
0.46 / -0.01
0.17 / -0.01

12.11 / -0.37
4.13 / -0.18

0.20 / -0.01
0.08 / 0.00

8.61 / -0.27
3.56 / -0.16

0.31 / -0.01
0.26 / -0.01

10.52 / -0.32
4.25 / -0.19

BQTerrace
BasketballDrive

Cactus
Kimono

ParkScene

2.11 / -0.05
-0.10 / 0.00
0.61 / -0.02
-0.14 / 0.00
0.21 / -0.01

23.56 / -0.47
0.80 / -0.02
11.40 / -0.26
0.36 / -0.01
8.05 / -0.23

1.37 / -0.03
0.04 / 0.00
0.45 / -0.01
-0.42 / 0.01
0.12 / 0.00

13.02 / -0.25
1.03 / -0.02
8.44 / -0.20
0.54 / -0.02
6.33 / -0.18

1.83 / -0.04
-0.09 / 0.00
0.73 / -0.02
-0.17 / 0.01
0.17 / -0.01

15.39 / -0.30
1.73 / -0.04
10.26 / -0.24
0.80 / -0.03
7.67 / -0.22

FourPeople
Johnny

KristenAndSara
Vidyo1

0.54 / -0.02
0.15 / -0.01
0.21 / -0.01
0.23 / -0.01

15.13 / -0.50
12.10 / -0.28
16.16 / -0.47
12.42 / -0.37

0.43 / -0.01
-0.07 / 0.00
0.22 / -0.01
0.23 / -0.01

10.30 / -0.35
7.92 / -0.19
9.12 / -0.27
8.22 / -0.25

0.54 / -0.02
0.00 / 0.00
0.69 / -0.03
0.53 / -0.02

12.21 / -0.41
10.30 / -0.23
11.04 / -0.32
10.58 / -0.32

Average 0.40 / -0.01 10.57 / -0.29 0.24 / -0.01 7.01 / -0.20 0.44 / -0.01 8.61 / -0.24

456 SUNWOONG KIM et al : FINE-SCALABLE SPIHT HARDWARE DESIGN FOR FRAME MEMORY COMPRESSION IN VIDEO …

is applied to the input data. The number of iterations
determined by this quantization method varies with block
complexity, and thereby disturbing on-the-fly operation.
For the on-the-fly operation, many cores with different
quantization levels may be used in parallel but the
hardware costs increase in proportion to the number of
quantization levels. As shown in the second, fourth, and
sixth columns of Table 5, the previous and proposed
algorithms with the target CR of 25% show similar
BDBR and BDPSNR results on average. However, when
the target CR increases to 50%, the average BDBR of the
proposed algorithm is 1.96% lower than that of the
MDA-SFL as shown in the third and seventh columns. In
addition, the average BDPSNR of the proposed
algorithm is 0.05 dB higher than that of the MDA-SFL.
These results represent that the proposed algorithm is
more effective than the lossy MDA-SFL, especially,
when the target CR is high. Compared to the 16×8 single
SPIHT algorithm, the average BDBR of the proposed
algorithm is 1.60% higher. It is because transform-based
coding algorithms show higher coding efficiency as the
size of coding block increases. However, the proposed
design is more effective in hardware implementation
given that the 16×8 single design requires larger
hardware costs as shown in Table 4.

VI. CONCLUSIONS

This paper extends the high-throughput SPIHT
hardware design in [7] to be fine-scalable and exploits it
as an FMC integrated with the HEVC encoder. The
proposed hardware design processes small-sized blocks
in parallel and pipelined manner, resulting in similar
coding efficiency and low hardware cost compared to the
previous design with the same throughput. In addition,
the proposed pass reduction scheme reduces hardware
costs, which are particularly critical in packer and parser
modules. The proposed design for a lossy FMC in video
codecs shows higher coding efficiency than the previous
FMC design, and it is more effective in video codec
systems requiring limited frame memory size, burst
transferring protocol, and data random access.

ACKNOWLEDGMENT

This research was supported by Basic Science

Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-2015R1C1A1A0
2037625) and was supported by IDEC (EDA Tool,
MPW).

REFERENCES

[1] Y. Lee, C.-E. Rhee, and H.-J. Lee, “A New Frame
Recompression Algorithm Integrated with H.264
Video Compression,” IEEE International Sympo-
sium on Circuits and Systems (ISCAS), May 2007.

[2] S. Kim, D. Lee, H. Kim, N. X. Truong, and J.-S.
Kim, “An Enhanced One-Dimensional SPIHT
Algorithm and Its Implementation,” Displays
Journal, Vol. 40, pp. 68 - 77, Dec. 2015.

[3] J. Kim and C.-M. Kyung, “A Lossless Embedded
Compression Using Significant Bit Truncation for
HD Video Coding,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 20, No. 6,
pp. 848-860, Jun. 2010.

[4] T.-H. Tsai and Y.-H. Lee, “A 6.4 Gbit/s Embedded
Compression Codec for Memory-Efficient Appli-
cations on Advanced-HD Specification,” IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 20, No.10, pp. 1277-1291, Oct.
2010.

[5] Y. Jin and H.-J. Lee, “A Block-based Pass-parallel
SPIHT Algorithm,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 22, No. 7,
pp. 1064-1075, Jul. 2012.

[6] L. Guo, D. Zhou, and S. Goto, “A New Reference
Frame Recompression Algorithm and Its VLSI
Architecture for UHD TV Video Codec,” IEEE
Transactions on Multimedia, Vol. 16, No. 8, pp.
2323-2332, Dec. 2014.

[7] S. Kim, D. Lee, J.-S. Kim, and H.-J. Lee, “A High-
Throughput Hardware Design of a One-
Dimensional SPIHT Algorithm,” IEEE Transactions
on Multimedia, Vol. 18, No. 3, pp. 392-404, Mar.
2016.

[8] S. Kim, D. Lee, J.-S. Kim, and H.-J. Lee, “A Block
Truncation Coding Algorithm and Hardware
Implementation Targeting 1/12 Compression for
LCD Overdrive,” IEEE/OSA Journal of Display
Technology, Vol. 12, No. 4, pp. 376-389, Apr. 2016.

[9] S. Kim, M. Kim, J.-S. Kim, and H.-J. Lee, “Fixed-

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.3, JUNE, 2017 457

Ratio Compression of an RGBW Image and Its
Hardware Implementation,” IEEE Journal on
Emerging and Selected Topics in Circuits and
Systems, Vol. 6, No. 4, pp. 484-496, Dec. 2016.

[10] S. Kim and H.-J. Lee, “RGBW Image Compression
by Low-Complexity Adaptive Multi-Level Block
Truncation Coding,” IEEE Transactions on
Consumer Electronics, Vol. 62, No. 4, pp. 412-419,
Nov. 2016.

[11] A. Said and W. A. Pearlman, “A New, Fast, and
Efficient Image Codec Based on Set Partitioning in
Hierarchical Trees,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 6, No. 3,
pp. 243-250, Jun. 1996.

[12] F. W. Wheeler and W. A. Pearlman, “SPIHT Image
Compression Without Lists,” IEEE International
Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Vol. 6, pp. 2047-2050, Jun.
2000.

[13] T. W. Fry and S. A. Hauck, “SPIHT Image
Compression on FPGAs,” IEEE Transactions on
Circuits and Systems for Video Technology, Vol.
15, No. 9, pp. 1138-1147, Sep. 2005.

[14] P. Corsonello, S. Perri, G. Staino, M. Lanuzza, and
G. Cocorullo, “Low Bit Rate Image Compression
Core for Onboard Space Applications,” IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 16, No. 1, pp. 114-128, Jan. 2006.

[15] C.-C. Cheng, P.-C. Tseng, C.-T. Huang, and L.-G.
Chen, “Multi-mode Embedded Compression Codec
Engine for Power-Aware Video Coding System,”
IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 19, No. 2, pp. 141–150,
Feb. 2009.

Sunwoong Kim received B.S., M.S.,
and Ph.D. degrees in Electrical
Engineering and Computer Science
from Seoul National University,
Seoul, Korea, in 2010, 2012, and
2016, respectively. He is currently
working as a postdoctoral researcher

at Seoul National University. His research interests are
hardware design for multimedia systems, computer
architecture, and memory systems.

Ji Hun Jang received B.S. degree in
Information and Communication
Engineering from Inha University,
Incheon, Korea, in 2015. He is
currently a master student in Depart-
ment of Information and Communi-
cation Engineering at Inha University,

Incheon, Korea. His research interests are VLSI design
of video coding and virtual reality.

Hyuk-Jae Lee received B.S. and
M.S. degrees in Electronics Engi-
neering from Seoul National
University, Korea, in 1987 and 1989,
respectively, and obtained a Ph.D.
degree in Electrical and Computer
Engineering from Purdue University

at West Lafayette, Indiana, in 1996. From 1998 to 2001,
he worked at the Server and Workstation Chipset
Division of Intel Corporation in Hillsboro, Oregon as a
senior component design engineer. From 1996 to 1998,
he was on the faculty of the Department of Computer
Science of Louisiana Tech University at Ruston,
Louisiana. In 2001, he joined the School of Electrical
Engineering and Computer Science at Seoul National
University where he is currently working as a Professor.
His research interests are in the areas of computer
architecture and SoC design for multimedia applications.

Chae Eun Rhee received the B.S.,
M.S. and Ph.D. degrees in Electrical
Engineering and Computer Science
from Seoul National University,
Seoul, Korea, in 2000, 2002 and
2011, respectively. From 2002 to
2005, she was with the Digital TV

Development Group, Samsung Electronics Company Ltd.,
Suwon City, Korea, as an Engineer, where she was
involved in bus architecture and MPEG decoder
development. In 2013, she joined the Department of
Information and Communication Engineering at Inha
University, Korea, where she is currently working as an
associate professor. Her research interests include
algorithm and architecture design of video coding for
HEVC and H.264/AVC, configurable video coding for real
time systems and the next generation virtual reality systems.

