DOI QR코드

DOI QR Code

Magnetic Properties and Application of Caltalysts in Biginelli Reaction for the Ni and Ni@C Synthesized by Levitational Gas Condensation (LGC)

부양증발응축법으로 제조된 Ni과 Ni@C의 자성특성 및 Biginelli 합성 촉매 적용연구

  • Uhm, Young Rang (Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI))
  • 엄영랑 (한국원자력연구원 동위원소연구부)
  • Received : 2017.06.02
  • Accepted : 2017.06.16
  • Published : 2017.06.30

Abstract

Carbon-encapsulated Ni and metal Ni nanoparticles were synthesized by levitational gas condensation (LGC). Methane ($CH_4$) gas was used to coat the surface of the Ni nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2~3 nm thin carbon layers with multi-shells structure.The low magnetization comparing with the Ni nanoparticles without carbon-shell results in the coexistence of nonmagnetic carbon and a large surface spin percentage with disordered magnetization orientation for the nanoparticles. Biginelli reactions in the presence of L-proline and Ni and carbon encapsulated Ni nanoparticles were carried out to change the ratio between stereoisomers. The obtained S-enantiomers for 3,4-dihydropyrimidine (DHPM) using catalysts of Ni, and Ni@C was an excess of about ${\Delta}{\sim}7.4%$ and ${\Delta}{\sim}19.6%$, respectively. The nanopowders were fully recovered using magnet to reuse as a catalyst. The Ni@C was shown at same yield to formation of 3,4-DHPM, though it was recycled for catalyst in the reaction.

물리적 기상합성법인 부양증발가스응축법을 이용하여 분말 제조 장치 내 아르곤(Ar)가스와 메탄($CH_4$)의 비를 조정하여 니켈(Ni) 금속분말과 탄소가 니켈(Ni) 금속 표면에 코팅 된 Ni@C 나노분말을 제조하였다. 제조된 금속분말은 약 20 nm의 평균입도를 가지는 반면, 탄소막이 코팅된 경우 10 nm 정도의 평균 입도를 가지며, 2~3 nm 두께의 그라파이트 다층막(multi-shell graphite)이 표면에 코팅된 분말이 제조되었다. Ni@C는 1 T 가해준 상태에서도 자화값이 포화되지 못하였다. Ni의 경우 표면에 부동태 산화피막(NiO)이 존재한다. 제조된 나노입자를 심혈관 질환 치료제인 디하이드로미리미딘(3,4-dihydropyrimidine)의 제조시 촉매제로 반응시켰으며, 자성분말 특성을 이용하여 촉매제를 회수하였다. Ni의 경우 S-이성질체(en-antiomer)가 ${\Delta}{\sim}7.4%$ 더 생성 되었으며, Ni@C의 경우 ${\Delta}{\sim}19.6%$였다. 탄소막이 코팅 된 Ni은 재활용 시에도 3,4-DHPM 수득율(yield)이 68 %로 양호하였다.

Keywords

References

  1. J. Barluenga, M. Tomas, A. Ballesteros, and L. A. Lopez, Tetrahedron Lett. 30, 4573 (1989). https://doi.org/10.1016/S0040-4039(01)80748-6
  2. M. C. Wang, C. L. Xu, Y. X. Zou, H. M. Liu, and D. K. Wang, Tetrahedron Lett. 46, 5413 (2005). https://doi.org/10.1016/j.tetlet.2005.05.143
  3. P. Harris and S. C. Tsang, Chem. Phys. Lett. 293, 53 (1998). https://doi.org/10.1016/S0009-2614(98)00770-2
  4. C. O. Kappe, Eur. J. Med. Chem. 35, 1043 (2000). https://doi.org/10.1016/S0223-5234(00)01189-2
  5. L. Qian-rong, X. Song, and Y. Hao, Chem. Res. Chinese U. 22, 40 (2006). https://doi.org/10.1016/S1005-9040(06)60042-1
  6. Y. R. Uhm, C. K. Rhee, J. J. Park, and S.-H. Jun, Res. Chem. Intermed. 39, 3387 (2013). https://doi.org/10.1007/s11164-012-0851-z
  7. Y. Lu, Z. P. Zhu, and Z. Y. Liu, Carbon 43, 367 (2005).
  8. Y. R. Uhm, H. M. Lee, and C. K. Rhee, IEEE Trans. Magn. 45, 2453 (2009). https://doi.org/10.1109/TMAG.2009.2018609
  9. B. S. Han, C. K. Rhee, M. K. Lee, and Y. R. Uhm, IEEE Trans. Magn. 42, 3779 (2000).
  10. Y. R. Uhm and C. K. Rhee, J. Nanomater. 2013, 1 (2013).
  11. Y. R. Uhm, H. M. Lee, O. Fedorova, I. Ovchinnikov, M. Valova, G. Rusinov, V. Charushin, and C. K. Rhee, Res. Chem. Intermed. 36, 867 (2010). https://doi.org/10.1007/s11164-010-0194-6
  12. Y. R. Uhm, M. K. Lee, and C. K. Rhee, J. Korean Powder Metall. Inst. 12, 441 (2005). https://doi.org/10.4150/KPMI.2005.12.6.441
  13. Y. R. Uhm, B. S. Han, M. K. Lee, and C. K. Rhee, Sol. Stat. Phenom. 118, 635 (2006). https://doi.org/10.4028/www.scientific.net/SSP.118.635