DOI QR코드

DOI QR Code

수소생산 기술동향

Technical Trends of Hydrogen Production

  • 투고 : 2017.06.10
  • 심사 : 2017.06.20
  • 발행 : 2017.06.30

초록

온실가스 배출과 지구온난화 문제로 인하여 화석연료를 대체할 수 있는 신재생에너지 개발 및 확산의 필요성이 증가하고 있는데, 청정에너지원인 수소가 주목을 받고 있다. 수소는 지구상에서 가장 많이 존재하는 원소이며, 화석연료, 바이오매스 및 물 등 다양한 형태로 존재한다. 수소를 연료로 사용하기 위해서는 경제적인 방법뿐만 아니라 환경에 미치는 영향을 최소화하는 방법으로 생산하는 것이 중요하다. 수소생산방법에는 전통적 방법인 화석연료 개질반응을 통한 생산과 재생가능한 방법인 바이오매스 및 물을 이용한 생산으로 나뉜다. 화석연료를 이용한 수소생산은 습윤개질반응, 자열개질반응, 부분산화반응 및 가스화반응 등 열화학적 방법으로 가능한데, 이를 청정에너지원으로서 사용하기 위해서는 수소생산과 더불어 이산화탄소 포집이 필요하다. 바이오매스를 이용한 수소생산은 그 양이 매우 미미한 수준이며, 특히 생물학적 전환법은 효율증가를 위한 반응기 구성, 수소생산미생물 배양 등 효과적으로 수소를 생산하기 위한 연구가 더욱 진행되어야 한다. 물분해를 통한 수소생산이 가장 청정한 수소생산기술이지만 태양광, 태양열, 풍력 등 재생 가능한 에너지원으로부터 충분한 에너지공급이 가능해야 한다.

The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order to use hydrogen for a clean energy source, the hydrogen production method should be eco-friendly and economic as well. There are two different hydrogen production methods: conventional thermal method using fossil fuel and renewable method using biomass and water. Steam reforming, autothermal reforming, partial oxidation, and gasification (using solid fuel) have been considered for hydrogen production from fossil fuel. When using fossil fuel, carbon dioxide should be separated from hydrogen and captured to be accepted as a clean energy. The amount of hydrogen from biomass is insignificant. In order to occupy noticeable portion in hydrogen industries, biomass conversion, especially, biological method should be sufficiently improved in a process efficiency and a microorganism cultivation. Electrolysis is a mature technology and hydrogen from water is considered the most eco-friendly method in terms of clean energy when the electric power is from renewable sources such as photovoltaic cell, solar heat, and wind power etc.

키워드

참고문헌

  1. International Energy Agency (IEA), "Energy Technology Perspectives 2015," Paris, (2015).
  2. Hadjipaschalis, I., Poullikkas, A., and Efthimiou, V., "Overview of Current and Future Energy Storage Technology for Electric Power Applications," Renew. Sustain. Energy Rev., 13(6-7), 1513-1522 (2009). https://doi.org/10.1016/j.rser.2008.09.028
  3. Balat, M., "Potential Importance of Hydrogen as a Future Solution to Environmental And Transportation Problems," Int. J. Hydrogen Energy, 33(15), 4013-4029 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.047
  4. Demirbas, A., and Dincer, K., "Sustainable Greed Diesel: A Futuristic View," Energy Sources, Part A., 30(13), 1233-1241 (2008). https://doi.org/10.1080/15567030601082829
  5. McDowall, W., and Eames, M., "Forecasts, Scenarios, Visions, Backcasts and Roadmaps to the Hydrogen Economy: A Review of the Hydrogen Futures Literature," Energy Policy, 34(11), 1236-1250 (2006). https://doi.org/10.1016/j.enpol.2005.12.006
  6. Zhang, J., Fisher, T. S., Ramachandran, P. V., Gore, J. P., and Mudawar, I., "A Review of Heat Transfer Issues in Hydrogen Storage Technologies," J. Heat Transfer, 127(12), 1391-1399 (2005). https://doi.org/10.1115/1.2098875
  7. Aceves, S. M., Espinosa-Loza, F. Ledesma-Orozco, E., Ross, T. O., Weisberg, A. H., Brunner, T. C., and Kircher, O., "High-Density Automotive Hydrogen Storage With Cryogenic Capable Pressure Vessels," Int. J. Hydrogen Energy, 35(3), 1219-1226 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.069
  8. Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M., "Metal Hydride Materials for Solid Hydrogen Storage: A Review," Int. J. Hydrogen Energy, 32(9), 1121-1140 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.022
  9. Elshout, R., "Hydrogen Production by Steam Reforming: Management of the Gas is Critical for Petroleum Refiners," Chem. Eng., 117, 34-38 (2010).
  10. Voldsund, M., Jordal, K., and Anantharaman, R., "Hydrogen Production with $CO_2$ Capture," Int. J. Hydrogen Energy, 41(9), 4969-4992 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.009
  11. Nikolaidis, P., and Poullikkas, A., "A Comparative Overview of Hydrogen Production Processes," Renew. Sustain. Energy Rev., 67, 597-611 (2017). https://doi.org/10.1016/j.rser.2016.09.044
  12. Ashik, U. P. M., Wan Daud, W. M. A., and Abbas, H. F., "Production of Greenhouses Gas Free Hydrogen by Thermocatalytic Decompostion of Methane-A Review," Renew. Sustain. Energy Rev., 44, 221-256 (2015). https://doi.org/10.1016/j.rser.2014.12.025
  13. Basile, A., Paola, L. D., Hai, F. I., and Piemonte, V., "Membrane Reactors for Energy Applications and Basic Chemical Production," Woodhead Publishing, Cambridge, 31-59 (2015).
  14. Ahmed, K., and Foger, K., "Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-Based Anodes for Solid Oxide Fuel Cells," Catal. Today, 63(2-4), 479-487 (2000). https://doi.org/10.1016/S0920-5861(00)00494-6
  15. Rostrup-Nielsen, J. R., "Catalyst Steam Reforming," Springer Berlin Heidelberg, Berlin, 30-73 (1984)
  16. Castro Luna, A. E., and Becerra, A. M., "Kinetices of Methane Steam Reforming on a Ni on Alumina-Titania Catalyst," React. Kinet. Catal. Lett., 61(2), 369-374 (1997). https://doi.org/10.1007/BF02478395
  17. Wei, J., and Iglesia, E., "Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters And Turnover Rate Comparisons Among Noble Metals," J. Phys. Chem., 108(13), 4094-4103 (2004). https://doi.org/10.1021/jp036985z
  18. Castro Luna, A. E., Becerra, A. M., and Dimitrijewits, M. I., "Methane Steam Reforming over Rhodium Promoted Ni/$Al_2O_3$ Catalysts," React. Kinet. Catal. Lett., 67(2), 247-252 (1999). https://doi.org/10.1007/BF02475767
  19. Jeong, J. H., Lee, J. W., Seo, D. J., Seo, Y. Yoon, W. L., Lee, D. K., and Kim, D. H., "Ru-doped Ni Catalysts Effective for the Steam Reforming of Methane without the Pre-Reduction Treatment with $H_2$," Appl. Catal. A: Gen., 302(2), 151-156 (2006). https://doi.org/10.1016/j.apcata.2005.12.007
  20. Li, D., Nakagawa, Y., and Tomishige, K., "Methane Reforming to Synthesis Gas over Ni Catalysts Modified with Noble Metals," Appl. Catal. A: Gen., 408(1-2), 1-24 (2011). https://doi.org/10.1016/j.apcata.2011.09.018
  21. Ritter J. A., and Ebner A. D., "State-of-the-Art Adsorption And Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries," Sep. Sci. Technol., 42(6), 1123-1193 (2007). https://doi.org/10.1080/01496390701242194
  22. Vernon P. D. F., Green M. L. H., Cheetham A. K., and Ashcroft A. T., "Partial Oxidation of Methane to Synthesis Gas," Catal. Lett., 6(2), 181-186 (1990). https://doi.org/10.1007/BF00774718
  23. Liu K., Song C., and Subramani V., "Hydrogen and Syngas Production and Purification Technology," A John Wiley & Sons, Inc., New Jersey, 127-155 (2010).
  24. Palmaa, V., Riccaa, A., Addeoa, B., Reab, M., Paolillob, G., and Ciambelli, P., "Hydrogen Production by Natural Gas in a Compact ATR-Based kW-Scale Fuel Processor," Int . J. Hydrogen Energy, 42(3), 1579-1589 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.049
  25. Park, J. W., Lee, S. W., Lee, C. B., Park, J. W., Lee, D. W., Kim, S. H., Kim, S. S., and Ryi, S. K., "Single-Stage Temperature-Controllable Water Gas Shift Reactor with Catalytic Nickel Plates," J. Power Sources, 247, 280-285 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.106
  26. Flamos, A., Geogallis, P. G., Doukas, H., and Psarras J., "Using Biomass to Acheave European Union Energy Targets-a Review of Biomass Status, Potential, and Suporting Polllicies," Int. J. Green. Energy, 8(4), 411-428 (2011). https://doi.org/10.1080/15435075.2011.576292
  27. Doranehgard, M. H., Samadyar, H., Mesbah, M., Haratipour, P., and Samiezade, S., "High-purity Hydrogen Production with in situ $CO_2$ Capture Based on Biomass Gasification," Fuel, 202, 29-35 (2017). https://doi.org/10.1016/j.fuel.2017.04.014
  28. Iribarren, D., Susmozas, A., Petrakopoulou, F., and Dufour, J., "Environmental Study on Hydorgen Production via Lignocellulosic Biomass Gasification," J. Clean. Prod., 69, 165-175 (2014). https://doi.org/10.1016/j.jclepro.2014.01.068
  29. Vasconcelos, E. A. F., Leitao, R. C., Santaella, S. T., "Factors that Affect Bacterial Ecology in Hydrogen-Producing Anaerobic Reactors," Bioenergy Res., 9(4), 1260-1271 (2016). https://doi.org/10.1007/s12155-016-9753-z
  30. Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., and Daud, W. R. W., "Overview Biohydrogen Technologies and Application in Fuel Cell Technology," Renew. Sustain. Energy Rev., 6, 137-162 (2016).
  31. Rossmeisl, J., Logadottir, A., and Norskov, J. K., "Electrolysis of Water on (oxidized) Metal Surface," Chem. Phys., 319(1-3), 178-184 (2005). https://doi.org/10.1016/j.chemphys.2005.05.038
  32. Abanades, S., Charvin, P., Lemont, F., and Flamant, G., "Novel two-step $SnO_2$/SnO Water-Splitting Cycle for Solar Thermochemical Production of Hydrogen," Int. J. Hydrogen Energy, 33(21), 7568-7578 (2008).
  33. Zamfirescu, C., Naterrer, G. F., and Dincer, I., "Water Splitting with a Dual Photo-Electrochemical Cell and Hybride Catalysis for Enhanced Solar Energy Utillization," Int. J. Energy Res., 37(10), 1175-1186 (2013). https://doi.org/10.1002/er.2910
  34. Moon, D. K., Lee, D. G., and Lee, C. H., "$H_2$ Pressure Swing Adsorption for High Pressure Syngas from an Integrated Gasification Combined Cycle with a Carbon Capture Process," Appl. Energy, 183, 760-774 (2016). https://doi.org/10.1016/j.apenergy.2016.09.038
  35. Wiheeb, A. D., Helwani, Z., Kim, J., and Othman, M. R., "Pressure Swing Adsorption Technology for Carbon Dioxide Capture," Sep. Purif. Rev., 45(2), 108-121 (2016). https://doi.org/10.1080/15422119.2015.1047958
  36. Golmakani, A., Fatemi, S., and Tamnanloo, J., "Investigating PSA, VSA, and TSA Method in SMR Unit of Refineries for Hydrogen Production with Fuel Cell Specification," Sep. Purif. Technol., 176, 73-91 (2017). https://doi.org/10.1016/j.seppur.2016.11.030
  37. Ribeiro, R. P. P. L., Grande, C. A., and Rodrigues, A. E., "Electric Swing Adsorption of Gas Separation and Purification: A Review," Sep. Sci. Technol., 49(13), 1985-2002 (2014). https://doi.org/10.1080/01496395.2014.915854
  38. Sailagyi, P. A., Westerwaal, R. J., Lansink, M., van Montfort, H. I., Trzesniewski, B. J., Garcia, M. V., Geerlings, H., and Dam, B., "Contaminant-Resistant MoF-Pd Composite for $H_2$ Separation, RCS Adv., 5, 89323-89326 (2015).
  39. Uemiya, S., Kajiwara, M., and Kojima, T., "Composite Membranes of Group VIII Metal Supported on Porous Alumina," AIChE J., 43, 2715-2723 (1997). https://doi.org/10.1002/aic.690431317
  40. Nair, B. N., Yamaguchi, T., Okubo, T., Suematsu, H., keizer, K., and Nakao, S. I., "Sol-Gel Synthesis of Molecular Sieving Silica Membranes," J. Membr. Sci., 135(2), 237-243 (1997). https://doi.org/10.1016/S0376-7388(97)00137-3
  41. Ryi S.-K., "Hydrogen Selective Membrane and Clean Energy," NICE, 32 (2) 188-194 (2014).
  42. Ward, T. L., and Dao, T., "Model of Hydrogen Permeation Behavior in Palladium Membranes," J. Membr. Sci., 153(2), 211-231 (1999). https://doi.org/10.1016/S0376-7388(98)00256-7
  43. Phair, J. W., and Badwal, S. P. S., "Review of Proton Conductor for Hydrogen Separation," Ionics, 12(2), 103-115 (2006). https://doi.org/10.1007/s11581-006-0016-4
  44. Balachandran, U., Lee, T. H., Chen, L., Song, S. J., Picciolo, J. J., and Dorris, S. E., "Hydrogen Separation by Dense Cermet Membranes," Fuel, 85(2), 150-155 (2006). https://doi.org/10.1016/j.fuel.2005.05.027
  45. Balachandran, U., Lee, T. H., and Dorris, S. E., "Hydrogen Production by Water Dissociation Using Mixed Conduction Dense Ceramic Membrane," Int. J. Hydrogen Energy, 32(4), 451-456 (2007). https://doi.org/10.1016/j.ijhydene.2006.05.010
  46. Uemiya, S., "State-of-the-art of Supported Metal Membranes for Gas Separation," Sep. Purif. Methods, 28(1), 51-85 (1999). https://doi.org/10.1080/03602549909351644
  47. Conde, J. J., Marono, M., and Sanchez-Hervas, J. M., "Pd-based Membranes for Hydrogen Separation:Review of Alloying Elements and their Influence on Membrane Properties," Sep. Purif. Rev., 46, 152-177 (2017). https://doi.org/10.1080/15422119.2016.1212379
  48. Plazaola, A. A., Tanaka, D. A. P., A M. V. S., and Gallucci, F., "Recent Advances in Pd-based Membranes for Membrane Reactor," Molecules, 22, 1-53 (2017).
  49. Li, H., Caravella, A., and Xu, H. Y., "Recent Progress in Pd-based Composite Membranes," J. Mater. Chem. A, 4, 14069-14094 (2016). https://doi.org/10.1039/C6TA05380G