참고문헌
- International Energy Agency (IEA), "Energy Technology Perspectives 2015," Paris, (2015).
- Hadjipaschalis, I., Poullikkas, A., and Efthimiou, V., "Overview of Current and Future Energy Storage Technology for Electric Power Applications," Renew. Sustain. Energy Rev., 13(6-7), 1513-1522 (2009). https://doi.org/10.1016/j.rser.2008.09.028
- Balat, M., "Potential Importance of Hydrogen as a Future Solution to Environmental And Transportation Problems," Int. J. Hydrogen Energy, 33(15), 4013-4029 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.047
- Demirbas, A., and Dincer, K., "Sustainable Greed Diesel: A Futuristic View," Energy Sources, Part A., 30(13), 1233-1241 (2008). https://doi.org/10.1080/15567030601082829
- McDowall, W., and Eames, M., "Forecasts, Scenarios, Visions, Backcasts and Roadmaps to the Hydrogen Economy: A Review of the Hydrogen Futures Literature," Energy Policy, 34(11), 1236-1250 (2006). https://doi.org/10.1016/j.enpol.2005.12.006
- Zhang, J., Fisher, T. S., Ramachandran, P. V., Gore, J. P., and Mudawar, I., "A Review of Heat Transfer Issues in Hydrogen Storage Technologies," J. Heat Transfer, 127(12), 1391-1399 (2005). https://doi.org/10.1115/1.2098875
- Aceves, S. M., Espinosa-Loza, F. Ledesma-Orozco, E., Ross, T. O., Weisberg, A. H., Brunner, T. C., and Kircher, O., "High-Density Automotive Hydrogen Storage With Cryogenic Capable Pressure Vessels," Int. J. Hydrogen Energy, 35(3), 1219-1226 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.069
- Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M., "Metal Hydride Materials for Solid Hydrogen Storage: A Review," Int. J. Hydrogen Energy, 32(9), 1121-1140 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.022
- Elshout, R., "Hydrogen Production by Steam Reforming: Management of the Gas is Critical for Petroleum Refiners," Chem. Eng., 117, 34-38 (2010).
-
Voldsund, M., Jordal, K., and Anantharaman, R., "Hydrogen Production with
$CO_2$ Capture," Int. J. Hydrogen Energy, 41(9), 4969-4992 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.009 - Nikolaidis, P., and Poullikkas, A., "A Comparative Overview of Hydrogen Production Processes," Renew. Sustain. Energy Rev., 67, 597-611 (2017). https://doi.org/10.1016/j.rser.2016.09.044
- Ashik, U. P. M., Wan Daud, W. M. A., and Abbas, H. F., "Production of Greenhouses Gas Free Hydrogen by Thermocatalytic Decompostion of Methane-A Review," Renew. Sustain. Energy Rev., 44, 221-256 (2015). https://doi.org/10.1016/j.rser.2014.12.025
- Basile, A., Paola, L. D., Hai, F. I., and Piemonte, V., "Membrane Reactors for Energy Applications and Basic Chemical Production," Woodhead Publishing, Cambridge, 31-59 (2015).
- Ahmed, K., and Foger, K., "Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-Based Anodes for Solid Oxide Fuel Cells," Catal. Today, 63(2-4), 479-487 (2000). https://doi.org/10.1016/S0920-5861(00)00494-6
- Rostrup-Nielsen, J. R., "Catalyst Steam Reforming," Springer Berlin Heidelberg, Berlin, 30-73 (1984)
- Castro Luna, A. E., and Becerra, A. M., "Kinetices of Methane Steam Reforming on a Ni on Alumina-Titania Catalyst," React. Kinet. Catal. Lett., 61(2), 369-374 (1997). https://doi.org/10.1007/BF02478395
- Wei, J., and Iglesia, E., "Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters And Turnover Rate Comparisons Among Noble Metals," J. Phys. Chem., 108(13), 4094-4103 (2004). https://doi.org/10.1021/jp036985z
-
Castro Luna, A. E., Becerra, A. M., and Dimitrijewits, M. I., "Methane Steam Reforming over Rhodium Promoted Ni/
$Al_2O_3$ Catalysts," React. Kinet. Catal. Lett., 67(2), 247-252 (1999). https://doi.org/10.1007/BF02475767 -
Jeong, J. H., Lee, J. W., Seo, D. J., Seo, Y. Yoon, W. L., Lee, D. K., and Kim, D. H., "Ru-doped Ni Catalysts Effective for the Steam Reforming of Methane without the Pre-Reduction Treatment with
$H_2$ ," Appl. Catal. A: Gen., 302(2), 151-156 (2006). https://doi.org/10.1016/j.apcata.2005.12.007 - Li, D., Nakagawa, Y., and Tomishige, K., "Methane Reforming to Synthesis Gas over Ni Catalysts Modified with Noble Metals," Appl. Catal. A: Gen., 408(1-2), 1-24 (2011). https://doi.org/10.1016/j.apcata.2011.09.018
- Ritter J. A., and Ebner A. D., "State-of-the-Art Adsorption And Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries," Sep. Sci. Technol., 42(6), 1123-1193 (2007). https://doi.org/10.1080/01496390701242194
- Vernon P. D. F., Green M. L. H., Cheetham A. K., and Ashcroft A. T., "Partial Oxidation of Methane to Synthesis Gas," Catal. Lett., 6(2), 181-186 (1990). https://doi.org/10.1007/BF00774718
- Liu K., Song C., and Subramani V., "Hydrogen and Syngas Production and Purification Technology," A John Wiley & Sons, Inc., New Jersey, 127-155 (2010).
- Palmaa, V., Riccaa, A., Addeoa, B., Reab, M., Paolillob, G., and Ciambelli, P., "Hydrogen Production by Natural Gas in a Compact ATR-Based kW-Scale Fuel Processor," Int . J. Hydrogen Energy, 42(3), 1579-1589 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.049
- Park, J. W., Lee, S. W., Lee, C. B., Park, J. W., Lee, D. W., Kim, S. H., Kim, S. S., and Ryi, S. K., "Single-Stage Temperature-Controllable Water Gas Shift Reactor with Catalytic Nickel Plates," J. Power Sources, 247, 280-285 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.106
- Flamos, A., Geogallis, P. G., Doukas, H., and Psarras J., "Using Biomass to Acheave European Union Energy Targets-a Review of Biomass Status, Potential, and Suporting Polllicies," Int. J. Green. Energy, 8(4), 411-428 (2011). https://doi.org/10.1080/15435075.2011.576292
-
Doranehgard, M. H., Samadyar, H., Mesbah, M., Haratipour, P., and Samiezade, S., "High-purity Hydrogen Production with in situ
$CO_2$ Capture Based on Biomass Gasification," Fuel, 202, 29-35 (2017). https://doi.org/10.1016/j.fuel.2017.04.014 - Iribarren, D., Susmozas, A., Petrakopoulou, F., and Dufour, J., "Environmental Study on Hydorgen Production via Lignocellulosic Biomass Gasification," J. Clean. Prod., 69, 165-175 (2014). https://doi.org/10.1016/j.jclepro.2014.01.068
- Vasconcelos, E. A. F., Leitao, R. C., Santaella, S. T., "Factors that Affect Bacterial Ecology in Hydrogen-Producing Anaerobic Reactors," Bioenergy Res., 9(4), 1260-1271 (2016). https://doi.org/10.1007/s12155-016-9753-z
- Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., and Daud, W. R. W., "Overview Biohydrogen Technologies and Application in Fuel Cell Technology," Renew. Sustain. Energy Rev., 6, 137-162 (2016).
- Rossmeisl, J., Logadottir, A., and Norskov, J. K., "Electrolysis of Water on (oxidized) Metal Surface," Chem. Phys., 319(1-3), 178-184 (2005). https://doi.org/10.1016/j.chemphys.2005.05.038
-
Abanades, S., Charvin, P., Lemont, F., and Flamant, G., "Novel two-step
$SnO_2$ /SnO Water-Splitting Cycle for Solar Thermochemical Production of Hydrogen," Int. J. Hydrogen Energy, 33(21), 7568-7578 (2008). - Zamfirescu, C., Naterrer, G. F., and Dincer, I., "Water Splitting with a Dual Photo-Electrochemical Cell and Hybride Catalysis for Enhanced Solar Energy Utillization," Int. J. Energy Res., 37(10), 1175-1186 (2013). https://doi.org/10.1002/er.2910
-
Moon, D. K., Lee, D. G., and Lee, C. H., "
$H_2$ Pressure Swing Adsorption for High Pressure Syngas from an Integrated Gasification Combined Cycle with a Carbon Capture Process," Appl. Energy, 183, 760-774 (2016). https://doi.org/10.1016/j.apenergy.2016.09.038 - Wiheeb, A. D., Helwani, Z., Kim, J., and Othman, M. R., "Pressure Swing Adsorption Technology for Carbon Dioxide Capture," Sep. Purif. Rev., 45(2), 108-121 (2016). https://doi.org/10.1080/15422119.2015.1047958
- Golmakani, A., Fatemi, S., and Tamnanloo, J., "Investigating PSA, VSA, and TSA Method in SMR Unit of Refineries for Hydrogen Production with Fuel Cell Specification," Sep. Purif. Technol., 176, 73-91 (2017). https://doi.org/10.1016/j.seppur.2016.11.030
- Ribeiro, R. P. P. L., Grande, C. A., and Rodrigues, A. E., "Electric Swing Adsorption of Gas Separation and Purification: A Review," Sep. Sci. Technol., 49(13), 1985-2002 (2014). https://doi.org/10.1080/01496395.2014.915854
-
Sailagyi, P. A., Westerwaal, R. J., Lansink, M., van Montfort, H. I., Trzesniewski, B. J., Garcia, M. V., Geerlings, H., and Dam, B., "Contaminant-Resistant MoF-Pd Composite for
$H_2$ Separation, RCS Adv., 5, 89323-89326 (2015). - Uemiya, S., Kajiwara, M., and Kojima, T., "Composite Membranes of Group VIII Metal Supported on Porous Alumina," AIChE J., 43, 2715-2723 (1997). https://doi.org/10.1002/aic.690431317
- Nair, B. N., Yamaguchi, T., Okubo, T., Suematsu, H., keizer, K., and Nakao, S. I., "Sol-Gel Synthesis of Molecular Sieving Silica Membranes," J. Membr. Sci., 135(2), 237-243 (1997). https://doi.org/10.1016/S0376-7388(97)00137-3
- Ryi S.-K., "Hydrogen Selective Membrane and Clean Energy," NICE, 32 (2) 188-194 (2014).
- Ward, T. L., and Dao, T., "Model of Hydrogen Permeation Behavior in Palladium Membranes," J. Membr. Sci., 153(2), 211-231 (1999). https://doi.org/10.1016/S0376-7388(98)00256-7
- Phair, J. W., and Badwal, S. P. S., "Review of Proton Conductor for Hydrogen Separation," Ionics, 12(2), 103-115 (2006). https://doi.org/10.1007/s11581-006-0016-4
- Balachandran, U., Lee, T. H., Chen, L., Song, S. J., Picciolo, J. J., and Dorris, S. E., "Hydrogen Separation by Dense Cermet Membranes," Fuel, 85(2), 150-155 (2006). https://doi.org/10.1016/j.fuel.2005.05.027
- Balachandran, U., Lee, T. H., and Dorris, S. E., "Hydrogen Production by Water Dissociation Using Mixed Conduction Dense Ceramic Membrane," Int. J. Hydrogen Energy, 32(4), 451-456 (2007). https://doi.org/10.1016/j.ijhydene.2006.05.010
- Uemiya, S., "State-of-the-art of Supported Metal Membranes for Gas Separation," Sep. Purif. Methods, 28(1), 51-85 (1999). https://doi.org/10.1080/03602549909351644
- Conde, J. J., Marono, M., and Sanchez-Hervas, J. M., "Pd-based Membranes for Hydrogen Separation:Review of Alloying Elements and their Influence on Membrane Properties," Sep. Purif. Rev., 46, 152-177 (2017). https://doi.org/10.1080/15422119.2016.1212379
- Plazaola, A. A., Tanaka, D. A. P., A M. V. S., and Gallucci, F., "Recent Advances in Pd-based Membranes for Membrane Reactor," Molecules, 22, 1-53 (2017).
- Li, H., Caravella, A., and Xu, H. Y., "Recent Progress in Pd-based Composite Membranes," J. Mater. Chem. A, 4, 14069-14094 (2016). https://doi.org/10.1039/C6TA05380G