DOI QR코드

DOI QR Code

Effect of microwave irradiation on lipase-catalyzed reactions in ionic liquids

  • An, Gwangmin (Department of Biological Engineering, Inha University) ;
  • Kim, Young Min (Department of Biological Science and Biotechnology, Hannam University) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University) ;
  • Ha, Sung Ho (Department of Advanced Materials & Chemical Engineering, Hannam University)
  • 투고 : 2017.03.15
  • 심사 : 2017.04.25
  • 발행 : 2017.06.25

초록

Microwave-assisted organic synthesis has gained a remarkable interest over the past years because of its advantages - (i) rapid energy transfer and superheating, (ii) higher yield and rapid reaction, (iii) cleaner reactions. Ionic liquids are well known for their unique properties such as negligible vapor pressure and high thermal stability. With these properties, ionic liquids have gained increasing attention as green, multi-use reaction media. Recently, ionic liquids have been applied as reaction media for biocatalysis. Lipase-catalyzed reactions in ionic liquids provide high activity and yield compared to conventional organic solvents or solvent free system. Since polar molecules are generally good absorbent to microwave radiation, ionic liquids were investigated as reaction media to improve activity and productivity. In this study, therefore, the effect of microwave irradiation in ionic liquids was investigated on lipase catalyzed reactions such as benzyl acetate synthesis and caffeic acid phenethyl ester synthesis. Comparing to conventional heating, microwave heating showed almost the same final conversion but increased initial reaction rate (3.03 mM/min) compared to 2.11 mM/min in conventional heating at $50^{\circ}C$.

키워드

참고문헌

  1. R. N. Gedye and J. B. Wei, Can. J. Chem., 76(5), 525-532 (1998). https://doi.org/10.1139/v98-075
  2. D. R. Baghurst and D. M. P. Mingos, Chem. Soc. Rev., 20, 1-47 (1991). https://doi.org/10.1039/cs9912000001
  3. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, Tetrahedron Lett., 27(3), 279-282 (1986). https://doi.org/10.1016/S0040-4039(00)83996-9
  4. R. J. Giguere, T. L. Bray, S. M. Duncan, and G. Majetich, Tetrahedron Lett., 27 (41), 4945 4948 (1986). https://doi.org/10.1016/S0040-4039(00)85103-5
  5. I. Roy and M. N. Gupta, Curr. Sci., 85(12), 1685-1693 (2003).
  6. C. O. Kappe, D. Dallinger, and S. S. Murphree, 'Practical Microwave Synthesis for Organic Chemists', Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
  7. S. H. Ha, N. L. Mai, G. An, and Y. -M. Koo, Bioresource Technol., 102(2), 1214-1219 (2011). https://doi.org/10.1016/j.biortech.2010.07.108
  8. J. Kim and S. H. Ha, Korean Chem. Eng. Res., 53(5), 570-575 (2015). https://doi.org/10.9713/kcer.2015.53.5.570
  9. Y. H. Moon, S. M. Lee, S. H. Ha, and Y.-M. Koo, Korean J. Chem. Eng., 23(2), 247-263 (2006). https://doi.org/10.1007/BF02705724
  10. V. I. Parvulescu and C. Hardacre, 2007, Chem. Rev., 107(6), 2615-2665 (2007). https://doi.org/10.1021/cr050948h
  11. F. van Rantwijk and R. A. Sheldon, Chem. Rev., 107(6), 2757-2785 (2007). https://doi.org/10.1021/cr050946x
  12. M. Moniruzzaman, N. Kamiya, and N. Goto, Org. Biomol. Chem., 8(13), 2887-2899 (2010). https://doi.org/10.1039/b926130c
  13. H. Hu, H. Yang, P. Huang, D. Cui, Y. Peng, J. Zhang, F. Lu, J. Lian, and D. Shi, Chem. Commun., 46, 3866-3868 (2010). https://doi.org/10.1039/b927321b
  14. M.-G. Ma, J.-F. Zhu, Y.-J. Zhu, and R.-C. Sun, Chem. Asian J., 9(9), 2378-2391 (2014). https://doi.org/10.1002/asia.201402288
  15. Q. Zhang, S. H. Zhao, J. Chen, and L. W. Zhang, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 1002, 411-417 (2015). https://doi.org/10.1016/j.jchromb.2015.08.021
  16. S. Mallakpour and Z. Rafiee, Polym. Degrad. Stab., 93(4), 753-759 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.01.028
  17. X. Liu, Y. Wang, J. Kong, C Niea, and X Lina, Anal. Methods, 4, 1012-1018 (2012). https://doi.org/10.1039/c2ay05834k
  18. T. Maugard, D. Gaunt, M. D. Legoy, and T. Besson, Biotech. Lett., 25(8), 623-629 (2003). https://doi.org/10.1023/A:1023060030558
  19. N. E. Leadbeater, L. M. Stencel, and E. C. Wood, Org. Biomol. Chem,, 5, 1052-1055 (2007). https://doi.org/10.1039/b617544a
  20. H. Zhao, G. A. Baker, Z. Song, O. Olubajo, L. Zanders, and S. M. Campbell, J. Mol. Cat. B: Enzym,, 57(1-4), 149-157 (2009). https://doi.org/10.1016/j.molcatb.2008.08.006
  21. T. D. Matos, N. King, L. Simmons, C. Walker, A. R. McClain, A. Mahapatro, F. J. Rispoli, K. T. McDonnell, and V. Shah, Green Chem. Lett. Rev., 4(1), 73-79 (2011). https://doi.org/10.1080/17518253.2010.501429
  22. S. H. Lee, Y. -M. Koo, and S. H. Ha, Korean J. Chem. Eng., 25(6), 1456-1462 (2008). https://doi.org/10.1007/s11814-008-0239-3
  23. A. Widjaja, T. H. Yen, and Y. H. Ju, J. Chin. Inst. Chem. Eng., 39(5), 413-418 (2008). https://doi.org/10.1016/j.jcice.2008.05.003
  24. M.-C. Parker, T. Besson, S. Lamare, and M.-D. Legoy, Tetrahed. Lett., 37(46), 8383-8386 (1996). https://doi.org/10.1016/0040-4039(96)01544-4
  25. G. D. Yadav and P. S. Lathi, J. Mol. Cat. A: Chem., 223(1-2), 51-56 (2004). https://doi.org/10.1016/j.molcata.2003.09.050
  26. J.-R. Carrillo-Munoz, D. Bouvet, E. Guibe-Jampel, A. Loupy and A. Petit, J. Org. Chem,, 61(22), 7746-7749 (1996). https://doi.org/10.1021/jo960309u
  27. P. Kerep and H. Ritter, Macromol. Rapid Commun., 27(9), 707-710 (2006). https://doi.org/10.1002/marc.200500781