참고문헌
- S. Ramakrishnan, S. Devaraju "Attack's Feature Selection-Based Network Intrusion Detection System Using Fuzzy Control Language" International Journal of Fuzzy Systems, 2016, 1-13.
- R. Bala Krishnan, N. R.Raajan "An Intellectual Intrusion Detection SystemModel for Attacks Classification using RNN" International Journal of Pharmacy & Technology, Vol. 8, No. 4, pp. 23157-23164
- KDD Cup 1999 Intrusion detection data: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- Chirag Modi, Dhiren Patel, Bhavesh Borissaniya, Hiren Patel, Avi Patel, Muttukrishnan Rajarajan, "A Survey of intrusion Detection techniques in Cloud", Journal of Network and Computer Application, Vol. 36, pp. 42-57, 2013. https://doi.org/10.1016/j.jnca.2012.05.003
- Saniee A. M., Mohamadi, H., Habibi, J.: Design and analysis of genetic fuzzy systems for intrusion detection in computer net- works. Expert Syst. Appl 38, 7067-7075 (2011) https://doi.org/10.1016/j.eswa.2010.12.006
- Wang, G., Hao, J., Ma, H., Huang, "A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering", Elsevier Expert Syst. Appl. Vol. 37, pp. 6225-6232, 2010. https://doi.org/10.1016/j.eswa.2010.02.102
- Sheikhan, M., Jadidi, Z., Farrokhi, H., "A Intrusion detection using reduced-size RNN based on feature grouping", Neural Comput., Vol. 21, No. 6, pp. 1185-1190, 2010.
- Cingolani P.: jFuzzyLogic: open source fuzzy logic library and FCL language implementation (fcl code). http://jfuzzylogic.sourceforge.net/html/example_fcl.html
- Gupta, K.K., Nath, B., Kotagiri, R., "Layered approach using conditional random fields for intrusion detection", IEEE Trans. Dependable Sec. Comput., No. 7, Vol. 1, pp. 35-49, 2010. https://doi.org/10.1109/TDSC.2008.20
- Wei, N., Di, H., "A probability approach to anomaly detection with twin support vector machines", J. Shanghai Jiaotong Univ. (Sci.), Vol. 15, No. 4, pp. 385-391, 2010. https://doi.org/10.1007/s12204-010-1021-3
- Devaraju, S., Ramakrishnan, S., "Performance analysis of intrusion detection system using various neural network classifiers", IEEE Proc. Int. Conf. Recent Trends Info. Tech., No. 4, pp. 35-312, 2011.
- Anuar, N.B., Sallehudin, H., Gani, A., Zakari, O.," Identifying false alarm for network intrusion detection system using hybrid data mining and decision tree", Malays. J. Comput. Sci., Vol. 21, No. 2, pp. 101-115, 2008. https://doi.org/10.22452/mjcs.vol21no2.3
- Devaraju, S., Ramakrishnan, S., "Performance comparison for intrusion detection system using neural network with KDD dataset", ICTACT J. Soft Comput. Vol. 4, No. 3, pp. 743-752, 2014. https://doi.org/10.21917/ijsc.2014.0106
- Jiang, M., Gan, Z., Wang, C., Wang, Z., "Research of the intrusion detection model based on data mining", Elsevier Energy Proc Vol. 13, pp. 855-863, 2011. https://doi.org/10.1016/S1876-6102(14)00454-8
- Tajbakhsh, A., Rahmati, M., Mirzaei, A., "Intrusion detection using fuzzy association rules", Elsevier Appl. Soft Comput. Vol. 9, pp. 462-469, 2009. https://doi.org/10.1016/j.asoc.2008.06.001
- Hyung-Jin Mun, Yooncheol Hwang, Ho-Yeob Kim, "Countermeasure for Prevention and Detection against Attacks to SMB Information System - A Survey," Journal of IT Convergence Society for SMB, Vol. 5, No. 2, pp. 1-6, 2015
- Miyea Shin, Sunghyuck Hong, "A Defending Method Against DDoS Attacks With Router Control," Journal of IT Convergence Society for SMB, Vol. 5, No. 1, pp. 21-26, 2015
- You-Dong Yun, "Development of Smart Senior Classification Model based on Activity Profile Using Machine Learning Method", Journal of the Korea Convergence Society, Vol. 8. No. 1, pp. 25-34, 2017. https://doi.org/10.15207/JKCS.2017.8.1.025
- Myung-Seong Yim, "Development of Measures of Information Security Policy Effectiveness To Maximize the Convergence Security", Journal of the Korea Convergence Society, Vol. 5, No. 4, pp. 27-32, 2014. https://doi.org/10.15207/JKCS.2014.5.4.027