DOI QR코드

DOI QR Code

Proliferation, Accumulation of Polyphenols, and Antioxidant Activities of Callus from the 'Anji Baicha' Cultivar of Tea [Camellia sinensis (L.) O. Ktze.]

  • Liu, Mingfei (College of Life and Environmental Sciences, Minzu University of China) ;
  • Wang, Junli (College of Life and Environmental Sciences, Minzu University of China) ;
  • Tian, Birui (College of Life and Environmental Sciences, Minzu University of China) ;
  • Huang, Jingjing (College of Life and Environmental Sciences, Minzu University of China) ;
  • Zhang, Rongrong (College of Life and Environmental Sciences, Minzu University of China) ;
  • Lin, Yuxing (College of Life and Environmental Sciences, Minzu University of China) ;
  • Xiao, Zefeng (College of Life and Environmental Sciences, Minzu University of China)
  • Received : 2016.05.31
  • Accepted : 2016.10.06
  • Published : 2017.04.28

Abstract

Tea is one of the most consumed beverages worldwide and the relatively high levels polyphenols is benefit for health. In this study, we developed an efficient system for proliferation of callus from 'Anji Baicha', a cultivar of tea (Camellia sinensis). Callus tissue was initially induced by culturing leaf explants on medium containing different plant growth regulators. For callus induction, thidiazuron (TDZ) was more effective than 2,4-dichlorophenoxyacetic acid (2,4-D), ${\alpha}-naphthalene$ acetic acid (NAA), and $N^6-benzyladenine$ (BA). The frequency of callus induction from leaf explants reached 90.21% on $1.0mg{\cdot}L^{-1}$ TDZ and the developed callus was reddish and friable. We also tested the effect of different concentrations of NAA, 2,4-D, indole 3-acetic acid (IAA), BA, and TDZ, alone and in combinations, on callus proliferation. Medium supplemented with TDZ in combination with IAA was suitable for callus proliferation and accumulation of tea polyphenols. The growth index value and tea polyphenol content of callus cultured on MS medium containing $0.5mg{\cdot}L^{-1}$ TDZ and $1.0mg{\cdot}L^{-1}$ IAA was maximally 1,351% and 23.24%, respectively, and the relative abundance of epicatechin was as high as 17.449%. We also measured the antioxidant activity of all samples and the callus with the highest tea polyphenol content also exhibited high potential radical scavenging activity.

Keywords

References

  1. Almajano M, Carbo R, Jimenez J, Gordon M (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108: 55-63. DOI: 10.1016/j.foodchem.2007.10.040
  2. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnology and Bioengineering 7: 138-149. DOI: 10.1007/BF02932911
  3. Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34: 119-134. DOI: 10.1023/A:1013374417961
  4. Di Domenico F, Foppoli C, Coccia R, Perluigi M (2012) Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols. BBA - Mol Basis of Dis 1822: 737-747. DOI: 10.1016/j.bbadis.2011.10.005
  5. Erkana N, Cetinb H, Ayranci E (2011) Antioxidant activities of Sideritis congesta Davis et Huber-Morath and Sideritis arguta Boiss et Heldr: Identification of free flavonoids and cinnamic acid derivatives. Food Res Int 44: 297-303. DOI:10.1016/j.foodres.2010.10.016
  6. Fassina G, Buffa A, Benellir R, Vamier, OE, Noonan DM, Albini A (2002) Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent. Aids 16: 939-941. DOI: 10.1097/00002030-200204120-00020
  7. Finkel T, Holbrook N J (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. DOI:10.1038/35041687
  8. Gursoy N, Sarikurkcu C, Cengiz M, Solak MH (2009) Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol 47: 2381-2388. DOI:10.1016/j.fct.2009.06.032
  9. Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J (2015) White tea (Camellia sinensis ) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem 169: 401-410. DOI:org/10.1016/j.foodchem.2014.07.005
  10. Hazarika RR, Chaturvedi R (2013) Establishment of dedifferentiated callus of haploid origin from unfertilized ovaries of tea (Camellia sinensis (L.) O. Kuntze) as a potential source of total phenolics and antioxidant activity. In Vitro Cell Dev-Pl 49: 60-69. DOI:10.1007/s11627-013-9490-3
  11. Hsouna AB, Trigui M, Culioli G, Blache Y, Jaoua S (2011) Antioxidant constituents from Lawsonia inermis leaves: Isolation, structure elucidation and antioxidative capacity. Food Chem 125: 193-200. DOI: 10.1016/j.foodchem.2010.08.060
  12. Kirby AJ, Schmidt RJ (1997) The antioxidant activity of Chinese herbs for eczema and of placebo herbs - I. J Ethnopharmacol 56: 103-108. DOI:org/10.1016/S0378-8741(97)01510-9
  13. Kokotkiewicz A, Bucinski A, Luczkiewicz M (2014) Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush). Plant Cell Tiss Organ Cult 118: 589-593. DOI: 10.1007/s11240-014-0502-8
  14. Li X, Chen C (2012) Systematic Evaluation on Antioxidant of Magnolol in vitro. Int Res J Pure Applied Chem 2: 68-76. DOI: 10.9734/IRJPAC/2012/628
  15. Liu K, Wang JL, Zhao L, Wang Q (2013) Anticancer, antioxidant and antibiotic activities of mushroom Ramaria flava. Food Chem Toxicol 58: 375-380. DOI:org/10.1016/j.fct.2013.05.001
  16. Mehta S, Rai PK, Rai DK, Rai NK, Rai AK, Bicanic D, Sharma B, Watal G (2010) LIBS-based detection of antioxidant elements in seeds of Emblica officinalis. Food Biophys 5: 186-192. DOI: 10.1007/s11483-010-9158-z
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x
  18. Qin XY, Cheng Y, Yu LC (2012) Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neurosci Lett 513: 170-173. DOI: 10.1016/j.neulet.2012.02.029
  19. Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G (2010) Antioxidant potential of oral feeding of Cynodon dactylon extract on diabetes induced oxidative stress. J Food Biochem 34: 78-92. DOI: 10.1111/j.1745-4514.2009.00265.x
  20. Stalman M, Koskamp AM, Luderer R, Vernooy JHJ, Wind JC, Wullems GJ, Croes AF (2003) Regulation of antraquinone biosynthesis in cell cultures of Morinda citrifolia. J Plant Physiol 160: 607-614. DOI: 10.1078/0176-1617-00773
  21. Szopa A, Ekiert H (2014) Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant Growth Regul 72: 51-58. DOI: 10.1007/s10725-013-9835-2
  22. Szopa A, Ekiert H, Muszynska B (2013) Accumulation of hydroxybenzoic acids and other biologically active phenolic acids in shoot and callus cultures of Aronia melanocarpa (Michx.) Elliott (black chokeberry). Plant Cell, Tissue and Organ Culture 113: 323-329. DOI: 10.1007/s11240-012-0272-0
  23. Tai Z, Cai L, Dai L, Dong L, Wang M, Yang Y, Cao Q, Ding Z (2011) Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem 126: 1648-1654. DOI: 10.1016/j.foodchem.2010.12.048
  24. Wang JL, Lu Y, Wang Q, Liu K, Song YF, Bi KL (2011) An efficient callus proliferation protocol and rhaponticin accumulation of Rheum franzenbachii Munt., a medicinal plant. J Plant Biochem Biotechnol 20: 252-257. DOI: 10.1007/s13562-011-0055-4
  25. Wu XJ, Hansen C (2008) Antioxidant capacity, phenolic content, and polysaccharide content of Lentinus edodes grown in whey permeate-based submerged culture. J Food Sci 73: 1-8. DOI: 10.1111/j.1750-3841.2007.00595.x
  26. Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9: 429-439. DOI: 10.1038/nrc2641
  27. Zhou J, Gong ZL, Zhang K, Ding YP (2012) Advance in anticancer studies on catechins and their derivatives. China J Chinese Material Med 37:2510-2518. DOI:10.4268/cjcmm20121702

Cited by

  1. Callus induction and browning suppression in tree peony Paeonia ostii ‘Fengdan’ vol.61, pp.3, 2020, https://doi.org/10.1007/s13580-020-00246-6