DOI QR코드

DOI QR Code

PCR을 이용한 축산물 가공식품 내 소고기 성분 검출법 개발

Development of a Method to Detect Cattle Material from Processed Meat Products Using a Polymerase Chain Reaction

  • 권영철 (진주보건대학교 임상병리과) ;
  • 하도윤 (경상남도 축산진흥연구소) ;
  • 허윤위 (경상대학교 수의과대학 약리.독성학교실) ;
  • 김태규 (경상남도 축산진흥연구소) ;
  • 최유정 (경상남도 축산진흥연구소) ;
  • 조대훈 (경상남도 축산진흥연구소) ;
  • 남상윤 (경상남도 축산진흥연구소) ;
  • 손병국 (경상남도 축산진흥연구소) ;
  • 황보원 (경상남도 축산진흥연구소) ;
  • 양병선 (진주보건대학교 임상병리과) ;
  • 김의경 (경상대학교 수의과대학 약리.독성학교실)
  • Kwon, Young Chul (Department of Medical Laboratory Science, Jinju Health College) ;
  • Hah, Do-Yun (Gyeongnam Livestock Promotion Research Institute) ;
  • Heo, Yunwi (Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Tae-Kyu (Gyeongnam Livestock Promotion Research Institute) ;
  • Choi, Yoo-Jeong (Gyeongnam Livestock Promotion Research Institute) ;
  • Jo, Dae-Hoon (Gyeongnam Livestock Promotion Research Institute) ;
  • Nam, Sang-Yun (Gyeongnam Livestock Promotion Research Institute) ;
  • Son, Byeong-Guk (Gyeongnam Livestock Promotion Research Institute) ;
  • Hwang, Bo-Won (Gyeongnam Livestock Promotion Research Institute) ;
  • Yang, Byoung-Seon (Department of Medical Laboratory Science, Jinju Health College) ;
  • Kim, Euikyung (Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University)
  • 투고 : 2016.11.29
  • 심사 : 2017.04.10
  • 발행 : 2017.06.30

초록

중합효소연쇄반응법을 이용한 축산물 가공식품 내에 존재하는 소고기 성분을 특이적으로 검출할 수 있는 방법을 개발하기 위하여 축산물 가공식품 78종류를 무작위로 선별하였다. 가공식품으로부터 추출한 genomic DNA를 이용하여 소의 미토콘드리아 16S rRNA 염기서열을 이용하여 strain-specific primer를 직접 제작하여 중합효소연쇄반응을 수행한 후, 증폭된 반응산물의 염기서열을 분석 하였다. 축산물 가공식품 내 소고기 성분 검출을 위한 중합효소연쇄반응 수행 결과, 소고기 성분이 함유되어 있는 17개의 축산물 가공식품이 정확히 증폭되었고, 증폭산물의 DNA 염기서열 분석 결과 소의 미토콘드리아 16S rRNA 서열과 95% 이상의 상동성을 보였다. 본 실험에서 제시된 방법으로 축산물 가공식품 내 소고기 성분검출을 적용하였을 시, 소고기 성분이 함유된 축산물 가공식품을 정확하게 감별할 수 있었으며, 나아가 식품 원재료의 허위기재 등에 의한 불량식품 유통 근절 및 종교적 이유로 인한 금기 식품감별 등과 같은 과학적 식품 감시에 기여할 수 있다고 사료된다.

Polymerase chain reaction (PCR) was used to detect cattle material from processed meat products. Seventy-eight different commercial processed meat products were purchased from several big food marts. Among them, 17 products contained cattle material (10 samples contained only cattle, 5 samples mixed with cattle and porcine, 2 samples mixed with cattle, porcine and chicken). The genomic DNA was extracted directly from the processed meat products, and strain-specific primer targeting the 16S ribosomal RNA mitochondrial gene was used. All PCR products were cloned into the pGEM-T easy vector and sequenced. Consequently, the PCR products were amplified from 10 processed meat products, which contained only cattle material in our conditions. Furthermore, PCR reactions showed the same results at mixed samples. The DNA sequence obtained from pGEM-T easy/PCR products showed more than 95% identity with Bos taurus 16S rRNA gene using homology analysis. In conclusion, we suggest that the method using PCR, as performed in this study, could be useful in detecting cattle material in processed meat products. Moreover, our system could be applicable in inspection procedures to improve the verification of correct labeling for import and export processed meat products.

키워드

참고문헌

  1. Han SH. Special Report-Meat Product. Food Engineering Progress. 1990;103-125.
  2. Hsieh HM, Tsai CC, Tsai LC, Chiang HL, Huang NE, Shih RTP, et al. Species identification of meat products using cytochrome b gene. Forensic Science Journal. 2005;4(1):29-36.
  3. Park YC, Ahn CY, Jin SO, Lim JY, Kim KH, Lee JH, et al. Identification of raw materials in processed meat products by PCR using species-specific primer. J Food Hyg Saf. 2012;27(1):68-73. https://doi.org/10.13103/JFHS.2012.27.1.068
  4. Ballin NZ. Authentication of meat and meat products. Meat Science. 2010;86(3):577-587. https://doi.org/10.1016/j.meatsci.2010.06.001
  5. Heo EJ, Ko EK, Seo KH, Kim YJ, Park HJ, Wee SH, et al. Validation of PCR and ELISA test kits for identification of domestic animal species in raw meat and meat products in Korea. J Food Hyg Saf. 2014;29(2):158-163. https://doi.org/10.13103/JFHS.2014.29.2.158
  6. Yang BS. Detection of extended-spectrum ${\beta}$-lactamase producing Klebsiella pneumoniae by multiplex polymerase chain reaction. Korean J Clin Lab Sci. 2006;38(3):173-178.
  7. Brown WM. Polymorphism in mitochondrial DNA of human as revealed by restriction endonuclease analysis. Proc Natl Acad Sci USA. 1980;77(6):3605-3609. https://doi.org/10.1073/pnas.77.6.3605
  8. Brown WM, Prager EM, Wang A, Wilson AC. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Biol. 1982;18(4):225-239.
  9. Lansman RA, Avise JC, Aquadro CF, Shapira JF, Daniel SW. Extensive genetic variation in mitochondria DNA'S among geographic population of the deer mouse. Peromyscus maniculatus. Evolution. 1983;37(1):1-16. https://doi.org/10.1111/j.1558-5646.1983.tb05509.x
  10. Amano T, Miyakoshi Y, Tokada T, Kikkawa T, Suzuki M. Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes. Anim Genet. 1994;25(1):29-36. https://doi.org/10.1111/j.1365-2052.1994.tb00400.x
  11. Kikkawa, Y, Amano T, Suzuki H. Analysis of genetic diversity of domestic cattle in East and Southeast Asia in terms of variations in restriction sites and sequences of mitochondrial DNA. Biochem Genet. 1995;33(1):51-60. https://doi.org/10.1007/BF00554558
  12. Mannen H, Kojima T, Oyama K, Mukai F, Ishida T, Tsuji S. Effect of mitochondrial DNA variation on carcass traits of Japanese black cattle. J Anim Sci. 1998;76(1):36-41. https://doi.org/10.2527/1998.76136x
  13. Mannen H, Tsuji S, Loftus RT, Bradley DG. Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics. 1998;150(3):1169-1175.
  14. Soichi T, Makiko H, Takeo Y, Masahiko S, Tatsuya F, Hiroshi A. A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horeseflesh in foods. Biosci Biotechnol Biochem. 2007;71(12):3131-3135. https://doi.org/10.1271/bbb.70683
  15. Hong Y, Kim MJ, Yang SM, Yoo IS, Kim HY. Development of duplex PCR method for simultaneous detection of rabbit (Oryctolagus cuniculus) and cat (Felis catus) meats. J Appl Biol Chem. 2015;58(4):383-387. https://doi.org/10.3839/jabc.2015.060
  16. Koh BRD, Kim JY, Na HM, Park SD, Kim YH. Development of species-specific multiplex PCR assays of mitochondrial 12S rRNA and 16S rRNA for the identification of animal species. Korean J Vet Serv. 2011;34(4):417-428. https://doi.org/10.7853/kjvs.2011.34.4.417
  17. Bartlett JMS, Stirling D. PCR Protocols. 2nd ed. New York: Humana; 2003. p89-99.
  18. Lahiff S, Glennon M, O'Brien L, Lyng J, Smith T, Maher M, et al. Species-specific PCR for the identification of ovine, porcine and chicken species in meat and bone meal (MBM). Mol Cell probes. 2001;15(1):27-35. https://doi.org/10.1006/mcpr.2000.0336