DOI QR코드

DOI QR Code

대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균

Sterilization of Food-Borne Pathogenic Bacteria by Atmospheric Pressure Dielectric Barrier Discharge Plasma

  • 이승제 (전라북도생물산업진흥원) ;
  • 송윤석 (전라북도생물산업진흥원) ;
  • 박유리 (전라북도생물산업진흥원) ;
  • 유승민 (국가핵융합연구소 플라즈마기술연구센터) ;
  • 전형원 (국가핵융합연구소 플라즈마기술연구센터) ;
  • 엄상흠 (국가핵융합연구소 플라즈마기술연구센터)
  • Lee, Seung Je (Research and Development Office, Jeonbuk Institute for Food-Bioindustry) ;
  • Song, Yoon Seok (Research and Development Office, Jeonbuk Institute for Food-Bioindustry) ;
  • Park, Yu Ri (Research and Development Office, Jeonbuk Institute for Food-Bioindustry) ;
  • Ryu, Seung Min (Innovation Technology Research Division, Plasma Technology Research Center, National Fusion Research Institute) ;
  • Jeon, Hyeong Won (Innovation Technology Research Division, Plasma Technology Research Center, National Fusion Research Institute) ;
  • Eom, Sang Heum (Innovation Technology Research Division, Plasma Technology Research Center, National Fusion Research Institute)
  • 투고 : 2016.11.21
  • 심사 : 2017.05.24
  • 발행 : 2017.06.30

초록

연구는 대기압 유전체장벽방전 플라즈마 처리에 따른 식품유해 미생물 사멸효과를 조사하기 위해 수행되었다. 플라즈마 처리 시, 활성종 생성 및 농도에 영향을 미치는 노출시간, 노출거리, 산소비율, 전력 변화에 따른 E. coli의 사멸효과를 조사한 결과, E. coli의 사멸율은 플라즈마 처리를 위한 노출시간, 산소비율, 전력의 증가에 따라 증가한 반면, 노출거리의 증가에 따라서는 사멸율이 감소하였다. 이 결과는 미생물 시료가 플라즈마에 노출되는 시간이 증가됨으로서 시료 내 NO 농도가 증가되고, E. coli의 사멸율 역시 증가되는 결과로 뒷받침할 수 있고, 미생물 사멸효과를 높이기 위해서는 활성종의 농도가 증가되어야 함을 의미한다. E. coli와 함께 B. cereus, B. subtilis, B. thuringiensis, B. atrophaeus를 대상으로 대기압 유전체 장벽방전 플라즈마에 의한 살균효과를 조사한 결과, 72.3~91.3%의 높은 사멸율을 나타내었다. 이러한 결과로 미루어, 대기압 유전체장벽방전 플라즈마기술은 다양한 미생물에 적용될 수 있는 유용한 살균기술임을 확인하였다.

This study aimed to explore the potential for food-industry application of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganism. The effects of the key parameters such as power, oxygen ratio, exposure time and distance on Escherichia coli KCCM 21052 sterilization by the atmospheric pressure DBD plasma treatment were investigated. The experimental results revealed that increasing the power, exposure time or oxygen ratio and decreasing the exposure distance led to an improvement in the sterilization efficiency of E. coli. Furthermore, the atmospheric pressure DBD plasma (1.0 kW power, 1.0% (v/v) $O_2$, 5 min exposure time and 20 mm exposure distance) treatment was very effective for the sterilization of food-borne pathogenic bacteria. The sterilization rate of E. coli, Bacillus cereus KCCM 40935, Bacillus subtilis KCCM 12027, Bacillus thuringiensis KCCM 11429 and Bacillus atrophaeus KCCM 11314 were 72.3%, 74.6%, 88.5%, 84.7% and 91.3%, respectively.

키워드

참고문헌

  1. Mok C., Lee T.: Dielectric barrier discharge plasma inactivation of Escherichia coli. Food Eng. Prog., 16, 33-39 (2012).
  2. Mok C., Jeon H.: Low pressure discharge plasma inactivation of microorganisms in black pepper powder. Food Eng. Prog., 17, 43-47 (2013).
  3. Luksiene Z., Buchovec I., Paskeviciute E.: Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-chlorophyllin-based photosensitization. J. Photoch. Photobio. B, 101, 326-331 (2010). https://doi.org/10.1016/j.jphotobiol.2010.08.002
  4. Song H.P., Kim B., Choe J.H., Jung S., Moon S.Y., Choe W.H., Jo C.R.: Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiol., 26, 432-436 (2010).
  5. Laroussi M.: Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym., 2, 391-400 (2005). https://doi.org/10.1002/ppap.200400078
  6. Ryu Y.H., Uhm H.S., Park G.S., Choi E.H.: Sterilization of Neurospora crassa by noncontacted low temperature atmospheric pressure surface discharged plasma with dielectric barrier structure. J. Korean Vacuum Soc., 22, 55-65 (2013). https://doi.org/10.5757/JKVS.2013.22.2.55
  7. Son H.H., Lee W.G.: Discharge properties of torch-type atmospheric pressure plasma and its local disinfection of microorganism. Korean Chem. Eng. Res., 49, 835-839 (2011). https://doi.org/10.9713/kcer.2011.49.6.835
  8. Yoon G.A., Mok C.: Microbial inactivation of grains used in Saengshik by corona discharge plasma jet. Korean J. Food Sci. Technol., 47, 70-74 (2015). https://doi.org/10.9721/KJFST.2015.47.1.70
  9. Lee H.B., Noh Y.E., Yang H.J., Min S.C.: Inhibition of foodborne pathogens on polystyrene, sausage casings, and smoked salmon using nonthermal plasma treatments. Korean J. Food Sci. Technol., 43, 513-517 (2011). https://doi.org/10.9721/KJFST.2011.43.4.513
  10. Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A.: Applied plasma medicine. Plasma Process Polym., 5, 503-533 (2008). https://doi.org/10.1002/ppap.200700154
  11. De Geyter N., Morent R.: Nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng., 14, 255-274 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150110
  12. Seo H.Y., Yoo E.M., Choi Y.R., Kim S.H., Kim K.M., Kim K.N.: Effect of non-thermal atmospheric pressure nitrogen and air plasma on the surface properties and the disinfection of denture base resin. J. Korean Soc. Dent. Hyg., 14, 783-788 (2014). https://doi.org/10.13065/jksdh.2014.14.05.783
  13. Kim J.H., Lee M.A., Han G.J., Cho B.H.: Plasma in dentistry: A review of basic concepts and applications in dentistry. Acta. Odontol. Scand., 72, 1-12 (2014). https://doi.org/10.3109/00016357.2013.795660
  14. Mok C., Lee T.: Operational properties and microbial inactivation performance of dielectric barrier discharge plasma treatment system. Food Eng. Prog., 15, 398-403 (2011).
  15. Laroussi M., Leipold F.: Evaluation of the roles of reactive species, heat and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom., 233, 81-86 (2004). https://doi.org/10.1016/j.ijms.2003.11.016
  16. Bogaerts A., Neyts E., Gijbels R., Mullen V.: Gas discharge plasmas and their application. Spectrochim. Acta B, 57, 609-658 (2002). https://doi.org/10.1016/S0584-8547(01)00406-2
  17. Jo J.O., Lee H.W., Mok Y.S.: Sterilization of scoria powder by corona discharge plasma. Appl. Chem. Eng., 25, 386-391 (2014). https://doi.org/10.14478/ace.2014.1046
  18. Mok C., Lee N.H.: Ultraviolet inactivation of Escherichia coli in stainless steel cups. Food Eng. Prog., 13, 122-129 (2009).
  19. Oshima T., Tato M.: Bacterial sterilization and intracellular protein release by a pulsed electric field. Adv. Biochem. Eng. Biotechnol., 90, 11-133 (2004).
  20. Mok C., Song D.M.: Low-pressure plasma inactivation of Escherichia coli. Food Eng. Prog., 14, 202-207 (2010).
  21. Kim J.E., Kim I.H., Min S.C.: Microbial decontamination of vegetables and spices using cold plasma treatments. Korean J. Food Sci. Technol., 45, 735-741 (2013). https://doi.org/10.9721/KJFST.2013.45.6.735
  22. Han I.J., Park J.N., Park J.G., Song B.S., Lee J.W., Kim J.H., Ryu H.S., Park J.R., Chun S.S.: Quality characteristics of milk porridge(Tarakjuk) sterilized with radiation technology. J. Korean Soc. Food Sci. Nutr., 40, 885-891 (2011). https://doi.org/10.3746/jkfn.2011.40.6.885
  23. Kim Y.S., Yun S.H., Jeong D.Y., Hahn K.S., Uhm T.G.: Isolation of Bacillus licheniformis producing antimicrobial agents against Bacillus cereus and its properties. Kor. J. Microbiol., 46, 270-277 (2010).
  24. Yoon Y.H., Nam S.H., Joo J.C., Ahn H.S.: Photocatalytic disinfection of indoor suspended microorganisms (Escherichia coli and Bacillus subtilis spore) with ultraviolet light. J. Korea Acad. Inustr. Coop. Soc., 15, 1204-1210 (2014).
  25. Jeon J.H., Park J.H.: Toxin gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Korean J. Food Sci. Technol., 42, 361-367 (2010).