DOI QR코드

DOI QR Code

Inhibitory Effect of Korean Fermented Soybean (Chungkookjang) Extract and Genistein Against Trp-P-1 Induced Genotoxicity in HepG2 Cells

  • Received : 2017.02.27
  • Accepted : 2017.04.05
  • Published : 2017.06.30

Abstract

This study evaluated the protective effect of Chungkookjang (CKJ) extract, a Korean traditional fermented soybean product made from Bacillus species in rice straw and boiled soybean, and one of its main flavonoids, genistein, against Trp-P-1 induced cytotoxicity and DNA damage in HepG2 cells. CKJ and genistein exhibited protective effect against Trp-P-1 induced cytotoxicity and Trp-P-1 induced DNA single strand breaks. CKJ and genistein inhibited Trp-P-1 induced CYP1A1 and CYP1A2 transcription in HepG2 cells. Our results indicated that CKJ and genistein have the protective effect against Trp-P-1 induced cytotoxicity and DNA damage. Via inhibiting expression of CYP1A1 and CYP1A2. CKJ can be used as a promising functional food material that prevents the genotoxicity induced by carcinogens produced by the heat treatment of foods such as heterocyclic amines (HCAs) that cause genomic instability.

청국장추출물과 청국장의 주요한 플라보노이드의 하나인 genistein의 HepG2 세포에서 Trp-P-1 유도 세포독성과 DNA손상에 대한 보호효과를 평가하였다. 청국장추출물과 주요 플라보노이드성분 genistein은 Trp-P-1 유도 세포독성에 대하여 세포독성보호효과를 나타내었다. 청국장추출물은 Trp-P-1 유도 DNA single strand breaks를 억제하였다. 한편, 청국장추출물은 HepG2 세포에서 Trp-P-1 유도에 의한 CYP1A1와 CYP1A2 발현의 억제를 나타내었다. 청국장추출물과 genistein은 Trp-P-1에 의한 유도 세포독성과 DNA손상에 대하여 CYP1A1, CYP1A2 발현억제에 의하여 보호효과가 나타나는 것으로 판단된다. 한국의 전통 콩발효식품인 청국장은 게놈 불안정성(genomic instability)을 일으키는 heterocyclic amines (HCAs)과 같은 식품의 가열조리로부터 올 수 있는 발암물질에 대한 유전독성을 예방할 수 있는 유망한 기능성물질로서 활용가능성이 있을 것으로 판단된다.

Keywords

References

  1. Cheng, K.W., Chen, F., and Wang, M.: Heterocyclic amines: chemistry and health. Mol. Nutr. Food Res., 50, 1150-1170 (2006). https://doi.org/10.1002/mnfr.200600086
  2. Layton, D.W., Bogen, K.T., Knize, M.G., Hatch, F.T., Johnson, V.M., and Felton, J.S.: Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis (Lond.), 16, 39-52 (1995). https://doi.org/10.1093/carcin/16.1.39
  3. Goldman R., and Shields P.G.: Food mutagens. J. Nutr., 133, Suppl. 3, 965S-973S (2003). https://doi.org/10.1093/jn/133.3.965S
  4. IARC: Monographs on the Evaluation of Carcinogenic Risks to Humans. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Lyon, France: IARC (1993).
  5. Majer, B.J., Mersch-Sundermann, V., Darroudi, F., Laky, B., de Wit, K., and Knasmuller, S.: Genotoxic effects of dietary and lifestyle related carcinogens in human derived hepatoma (HepG2, Hep3B) cells. Mutat. Res., 13, 551, 153-166 (2004).
  6. Baird, W.M., Hooven, L.A., and Mahadevan, B.: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen., 45, 106-114 (2005). https://doi.org/10.1002/em.20095
  7. Ryu, S.H.: Studies on antioxidative effects antioxidative components of soybean and Chongkukjang. Ph..D. thesis, Inje Univ. (2004).
  8. Cole, S.P.: Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol., 17, 259-263 (1986).
  9. Sing, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L.: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175, 184-191 (1988). https://doi.org/10.1016/0014-4827(88)90265-0
  10. Olive, P.L., Banath, R.E., and Durand, R.E.: Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat. Res., 122, 86-94 (1990). https://doi.org/10.2307/3577587
  11. Olive, P.L.: The comet assay. An overview of techniques. Methods Mol. Biol.. 203, 179-194 (2002).
  12. Olive, P.L., Durand, R.E., Banath, J.P., and Johnston, P.J.: Analysis of DNA damage in individual cells. Methods Cell Biol., 64, 235-149 (2001).
  13. Yang, S.P., and Raner, G.M.: Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract. Toxicol. Appl. Pharmacol., 202, 140-150 (2005). https://doi.org/10.1016/j.taap.2004.06.014
  14. Skog, K.I., Johansson, M.A., and Jagerstad, M.I.: Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake. Food Chem. Toxicol., 36, 879-896 (1998). https://doi.org/10.1016/S0278-6915(98)00061-1
  15. Keating, G.A., Layton, D.W., and Felton, J.S.: Factors determining dietary intakes of heterocyclic amines in cooked foods. Mutat. Res., 443, 149-56 (1999). https://doi.org/10.1016/S1383-5742(99)00017-4
  16. Knize, M.G., Salmon, C.P., Pais, P., and Felton, J.S.: Food heating and the formation of heterocyclic aromatic amine and polycyclic aromatic hydrocarbon mutagens/carcinogens. Adv. Exp. Med. Biol., 459, 179-193 (1999).
  17. Butler, M.A., Guengerich, F.P., and Kadlubar, F.F.: Metabolic oxidation of the carcinogens 4-aminobiphenyl and 4,4'-methylene-bis(2-chloroaniline) by human hepatic microsomes and by purified rat hepatic cytochrome P-450 monooxygenases. Cancer Res., 49, 25-31 (1989).
  18. Sinha, R, Rothman, N., Brown, E.D., Mark, S.D., Hoover, R.N., Caporaso, N.E., Levander, O.A., Knize, M.G., Lang, N.P., and Kadlubar, F.F.: Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res., 54, 6154-6159 (1994).
  19. Nagao, M.: A new approach to risk estimation of food-borne carcinogens-heterocyclic amines-based on molecular information. Mutat. Res., 431, 3-12 (1999). https://doi.org/10.1016/S0027-5107(99)00154-2
  20. Felton, J.S., Knize, M.G., Wu, R.W., Colvin, M.E., Hatch, F.T., and Malfatti MA.: Mutagenic potency of food-derived heterocyclic amines. Mutat. Res., 616, 90-94 (2007). https://doi.org/10.1016/j.mrfmmm.2006.11.010
  21. Dashwood, R.H.: Modulation of heterocyclic amine-induced mutagenicity and carcinogenicity: an 'A-to-Z' guide to chemopreventive agents, promoters, and transgenic models. Mutat. Res., 511, 89-112 (2002). https://doi.org/10.1016/S1383-5742(02)00005-4
  22. Edenharder, R., von Petersdorff, I., and Rauscher, R.: Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutat. Res., 287, 261-274 (1993). https://doi.org/10.1016/0027-5107(93)90019-C
  23. Hammons, G.J., Fletcher, J.V., Stepps, K.R., Smith, E.A., Balentine, D.A., Harbowy, M.E., and Kadlubar, F.F.: Effects of chemoprotective agents on the metabolic activation of the carcinoge.nic arylamines PhIP and 4-aminobiphenyl in human and rat liver microsomes. Nutr. Cancer, 33, 46-52 (1999). https://doi.org/10.1080/01635589909514747
  24. Huber, W.W., McDaniel, L.P., Kaderlik, K.R., Teitel, C.H., Lang, N.P., and Kadlubar, F.F.: Chemoprotection against the formation of colon DNA adducts from the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the rat. Mutat. Res., 376, 115-122 (1997). https://doi.org/10.1016/S0027-5107(97)00033-X
  25. Tsuda, H., Uehara, N., Iwahori, Y., Asamoto, M., Iigo, M., Nagao, M., Matsumoto, K., Ito M., and Hirono I.: Chemopreventive effects of ${\beta}$-carotene, ${\alpha}$-tocopherol and five naturally occurring antioxidants on initiation of hepatocarcinogenesis by 2-amino-3-methylimidazo[4,5-f]quinoline in the rat. Jpn. J. Cancer Res., 85, 1214-219 (1994). https://doi.org/10.1111/j.1349-7006.1994.tb02932.x
  26. Oguri, A., Suda, M., Totsuka, Y., Sugimura, T., and Wakabayashi, K.: Inhibitory effects of antioxidants on formation of heterocyclic amines. Mutat. Res., 402, 237-245 (1998). https://doi.org/10.1016/S0027-5107(97)00303-5
  27. Trakoontivakorn, G., Nakahara, K., Shinomoto, H., Takenaka, M., Onishi-Kameyama, M., Ono, H., Yoshida, M., Nagata T., and Tsushida, T.: Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J. Agric. Food Chem., 49, 3046-3050 (2001). https://doi.org/10.1021/jf010016o
  28. Anderson, D., Dobrzynska, M.M., Basaran, N., Basaran, A., and Yu, T.-W.: Flavonoids modulate comet assay responses to food mutagens in human lymphocytes and sperm. Mutat. Res., 402, 269-277 (1998). https://doi.org/10.1016/S0027-5107(97)00306-0
  29. Anderson, D., Basaran, N., Dobrzynska, M.M., Basaran, A.A., and Yu, T.-W.: Modulating effects of flavonoids on food mutagens in human blood and sperm samples in the comet assay. Teratogen. Carcinogen. Mutagen., 17, 45-58 (1997). https://doi.org/10.1002/(SICI)1520-6866(1997)17:2<45::AID-TCM1>3.0.CO;2-E
  30. Navajas, C., Poso, A., and Gynther, J., CoMFA of flavonoids with antimutagenic activity against 2-amino-3-methylimidazo[ 4,5-f]quinoline (IQ). Electron. J. Theor. Chem., 1, 45-51 (1996).
  31. Crofts, F.G., Sutter, T.R., and Strickland, P.T.: Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1, P4501A2 and P4501B1. Carcinogenesis, 19, 1969-1973 (1998). https://doi.org/10.1093/carcin/19.11.1969
  32. King, R.S., Kadlubar, F.F., and Turesky, R.J.: In vivo metabolism of heterocyclic aromatic amines. In: Heterocyclic Amines: Food Borne Carcinogens (eds., Nagao, M., and Sugimura, T.), John Wiley & Sons, Ltd., Chichester Sussex, England, pp. 90-111 (2000).
  33. Xu, M., Schut, H.A.J., Bjeldanes, L.F., Williams, D.E., Bailey, G.S., and Dashwood, R.H.: Inhibition of 2-amino-3-methylimidazo[4,5-f]quinoline-DNA adducts by indole-3-carbinol: dose-response studies in the rat colon. Carcinogenesis, 18, 2149-2153 (1997). https://doi.org/10.1093/carcin/18.11.2149
  34. He, Y.H., Smale, M.H., and Schut, H.A.: Chemopreventive properties of indole-3-carbinol (I3C): inhibition of DNA adduct formation of the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), in female F344 rats. J. Cell. Biochem. Suppl., 27, 42-51 (1997).
  35. Guo, D., Schut, H.A.J., Davis, C.D., Snyderwine, E.G., Bailey, G.S., and Dashwood, R.H.: Protection by chlorophyllin and indole-3-carbinol against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced DNA adducts and colonic aberrant crypts in the F344 rat. Carcinogenesis, 16, 2931-2937 (1995). https://doi.org/10.1093/carcin/16.12.2931
  36. Schut, H.A., and Dashwood, R.H.: Inhibition of DNA adduct formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by dietary indole-3- carbinol (I3C) in the mammary gland, colon, and liver of the female F344 rat. Ann. New York Acad. Sci., 768, 210-214 (1995). https://doi.org/10.1111/j.1749-6632.1995.tb12124.x
  37. Hernaez, J., Xu, M., and Dashwood, R.H.: Effects of tea and chlorophyllin on the mutagenicity of N-hydroxy-IQ: studies of enzyme inhibition, molecular complex formation, and degradation/scavenging of the active metabolites. Environ. Mol. Mutagen., 30, 468-474 (1997). https://doi.org/10.1002/(SICI)1098-2280(1997)30:4<468::AID-EM12>3.0.CO;2-B
  38. Kim, J.I., Kang, M.J., and Kwon, T.W.: Antidiabetic Effect of Soybean and Chongkukjang. Korea Soybean Society, 20, 44-53 (2003).
  39. Kim, S.H., Yang, J.L., and Song, Y.S., Physiological Functions of Chongkukjang. Food Industry and Nutr. 4, 40-46 (1999).
  40. Cho, Y.J., Ch, W.S., Bok, S.K., Kim, M.U., Chun, C.S., and Choi, U.K.: Production and Separation of Anti-hypertensive Peptide during Chunggugjang Fermentation with Bacillus subtilis CH-1023. J. Korean Soc. Appl. Biol. Chem., 43, 247-253 (2000).
  41. Kang, S.M., Lee, C.S., Yoo, C.K., and Seo, W.S.: Purification and characterization of fibrinolytic enzyme excreted by Bacillus subtilis K-54 isolated from ChungGukJang. Kor. J. Appl. Microbiol. Biotechnol., 26, 507-515 (1998).
  42. Kim, Y., Cho, J.Y., Kuk, J.H., Moon, J.H., Cho, J.I., Kim, Y.C., and Park, K.H.: Identification and antimicrobial activity of phenylacetic acid produced by Bacillus l icheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol., 48, 312-317 (2004). https://doi.org/10.1007/s00284-003-4193-3
  43. Yang, J.L., Lee, S.H., and Song, Y.S.: Improving effect of powders of cooked soybean and chongkukjang on blood pressure and lipid metabolism in spontaneously hypertensive rats. Kor. J. Food Nutr., 32, 899-906 (2003). https://doi.org/10.3746/jkfn.2003.32.6.899
  44. Anthony, M.S., Clarkson, T.B., and Williams, J.K.: Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am. J. Clin. Nutr., 68, Suppl. 1390S-1393S (1998). https://doi.org/10.1093/ajcn/68.6.1390S
  45. Barnes, S., Sfakianos, J., Coward, L., and Kirk, M.: Soy isoflavonoids and cancer prevention. Underlying biochemical and pharmacological issues. Adv. Exp. Med. Biol., 401, 87-100 (1996).
  46. Song, E.J., Kim, H.P., and Heo, M.Y.: Protective effect of genistein and Korean fermented soybean (Chungkookjang) extract against benzo(a)pyrene induced DNA damage in HepG2 cells. Yakhak Hoeji, 52, 376-383 (2008).
  47. Lautraite, S., Musonda, A.C., Doehmer, J., Edwards, G.O., and Chipman, J.K.: Flavonoids inhibit genetic toxicity produced by carcinogens in cells expressing CYP1A2 and CYP1A1. Mutagenesis, 17, 45-53 (2002). https://doi.org/10.1093/mutage/17.1.45
  48. Kang, Z.C., Tsai, S.J., and Lee, H.: Quercetin inhibits benzo [a]pyrene-induced DNA adducts in human Hep G2 cells by altering cytochrome P-450 1A1 gene expression. Nutr. Cancer, 35, 175-179 (1999). https://doi.org/10.1207/S15327914NC352_12
  49. Schwarz, D., Kisselev, P., and Roots, I.: CYP1A1 genotype-selective inhibition of benzo[a]pyrene activation by quercetin. Eur. J. Cancer, 41, 151-158 (2005). https://doi.org/10.1016/j.ejca.2004.08.011
  50. Kanazawa, K., Yamashita, T., Ashida, H., and Danno, G.: Antimutagenicity of flavones and flavonols to heterocyclic amines by specific and strong inhibition of the cytochrome P450 1A family. Biosci. Biotechnol Biochem., 62, 970-977 (1998). https://doi.org/10.1271/bbb.62.970
  51. Shertzer, H.G., Puga, A., Chang, C., Smith, P., Nebert, D.W., Setchell, K.D., and Dalton, T.P.: Inhibition of CYP1A1 enzyme activity in mouse hepatoma cell culture by soybean isoflavones. Chem. Biol. Interact., 123, 31-49 (1999). https://doi.org/10.1016/S0009-2797(99)00121-0
  52. Steiner, C., Peters, W.H., Gallagher, E.P., Magee, P., Rowland, I., and Pool-Zobel, B.L.: Genistein protects human mammary epithelial cells from benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide and 4-hydroxy-2-nonenal genotoxicity by modulating the glutathione/glutathione S-transferase system. Carcinogenesis, 28, 738-748 (2007).
  53. Park, K.Y., Jung, K.O., Rhee, S.H., and Choi, Y.H.: Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mutat. Res., 523-524, 43-53 (2003). https://doi.org/10.1016/S0027-5107(02)00320-2
  54. Miyazawa, M., Sakano, K., Nakamura, S., and Kosaka, H.: Antimutagenic activity of isoflavones from soybean seeds (Glycine max merrill). J. Agric. Food Chem., 47, 1346-1349 (1999). https://doi.org/10.1021/jf9803583
  55. Itaglione, P., and Fogliano, V.: Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 802, 189-199 (2004). https://doi.org/10.1016/j.jchromb.2003.09.029
  56. Kim N.Y., Song, E.J., Kwon, D.Y., Kim H.P., and Heo, M.Y.: Antioxidant and antigenotoxic activities of Korean fermented soybean, Food Chem. Tox., 46, 1184-1189(2008). https://doi.org/10.1016/j.fct.2007.12.003