DOI QR코드

DOI QR Code

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Received : 2016.08.04
  • Accepted : 2017.01.31
  • Published : 2017.06.30

Abstract

The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

Keywords

References

  1. ACI (American Concrete Institute). (2008). ACI 318-08: Building code requirements for structural concrete and commentary. Farmington Hills, MI: Committee 318, American Concrete Institute.
  2. Altinier, D. (2015). Prova di carico - tegolo tipo BigOndal. Load test report No. 3498/TV, 4emme (pp. 24).
  3. Bamonte, P., & Pisani, M. A. (2015). Creep analysis of compact cross-sections cast in consecutive stages-Part 2: Algebraic models. Engineering Structures, 96, 178-189. https://doi.org/10.1016/j.engstruct.2014.04.036
  4. Barr, P. J., & Angomas, F. (2010). Differences between calculated and measured long-term deflections in a prestressed concrete girder bridge. Journal of Performance of Constructed Facilities, 24(6), 603-609. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000121
  5. Belleri, A., Torquati, M., & Riva, P. (2014). Seismic performance of ductile connections between precast beams and roof elements. Magazine of Concrete Research, 66(11), 553-562. https://doi.org/10.1680/macr.13.00092
  6. Belletti, B. (2009). Evaluation of the interaction effects in coupled thin walled prestressed concrete roof elements. European Journal of Environmental and Civil Engineering, 13(6), 745-764. https://doi.org/10.1080/19648189.2009.9693149
  7. Belletti, B., Bernardi, P., & Michelini, E. (2016). Behavior of thin-walled prestressed concrete roof elements-Experimental investigation and numerical modelling. Engineering Structures, 107, 166-179. https://doi.org/10.1016/j.engstruct.2015.06.058
  8. Biondini, F., Dal Lago, B., & Toniolo, G. (2013). Role of wall panel connections on the seismic performance of precast structures. Bulletin of Earthquake Engineering, 11, 1061-1081. https://doi.org/10.1007/s10518-012-9418-z
  9. Biondini, F., & Toniolo, G. (2010). Experimental research on seismic behavior of precast structures. Italian Cement Industry, 854, 74-79.
  10. Bischoff, P. H. (2005). Re-evaluation of deflection predictions for concrete beams reinforced with steel and FRP bars. Journal of Structural Engineering, ASCE, 131(5), 752-767. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752)
  11. Branson, D. E. (1977). Deformation of concrete structures. New York: McGraw-Hill.
  12. Breccolotti, M., & Materazzi, A. M. (2015). Prestress losses and camber growth in wing-shaped structural members. PCI Journal, 60(1), 98-117.
  13. Carbonari, S., Gara, F., Roia, D., Leoni, G., & Dezi, L. (2013). Tests on two 18-years-old prestressed thin walled roof elements. Engineering Structures, 49, 936-946. https://doi.org/10.1016/j.engstruct.2012.12.037
  14. CEB (1984) Structural effects of time-dependent behaviour of concrete. St. Saphorin: CEB Bulletin 142/142 bis, Georgi.
  15. CEB-FIB. (2013). fib Model Code 2010, fib bulletin 66 (Vol. 1). Lausanne: Federation Internationale du Beton/International Federation for Structural Concrete.
  16. Colombo, A., Negro, P. & Toniolo, G. (2014). The influence of claddings on the seismic response of precast structures: The Safecladding project. In Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology. Istanbul, Turkey, August 25-29, Paper No. 1877.
  17. Crossett, P., Taylor, S., Robinson, D., Sonebi, M., Garcia-Taengua, E., Deegan, P. & Ferrara, L. (2015). The flexural behaviour of SCC beams pre-stressed with BFRP. In Proceedings of the 7th conference of Advanced Composite in Constructions. Cambridge, UK, September 9-11, pp. 62-67.
  18. Dal Lago, A. (1973). Progetto e verifica della deformazione negli elementi precompressi (Design and verification of deformation in pre-stressed members. LIPE-L'Industria Italiana Per l'Edilizia (Italian Industry for Construction), 4-5-6.
  19. Dal Lago, B., Dal Lago, A., Basso, A. & Franceschelli, F. (2016a). Exceptional long-span element for industrial roofing. Concrete Plant International, 3, 182-184.
  20. Dal Lago, A. & Mantegazza, G. (1988). Indagine teorico sperimentale sulla durabilita di strutture in calcestruzzo a ridotto spessore (strutture Ondal) impiegando un additivo liquido a base di silica fume. In Proceedings of the 7th CTE (Collegio dei Tecnici dell'industrializzazione Edilizia) Congress. Venice, Italy, November 4-6.
  21. Dal Lago, B., Taylor, S., Deegan, P., Crossett, P., Sonebi, M., Ferrara, L. & Pattarini, A. (2016c). Pre-stressing using BFRP bars: An experimental investigation on a new frontier of FRSCC. In Proceedings of the conference on Civil Engineering Research in Ireland 2016, Galway, Republic of Ireland, Paper No. 19.
  22. Dal Lago, B., Toniolo, G., & Lamperti Tornaghi, M. (2016b). Influence of different mechanical column-foundation connection devices on the seismic behaviour of precast structures. Bulletin of Earthquake Engineering. doi:10.1007/s10518-016-0010-9.
  23. di Prisco, M., Dozio, D., & Belletti, B. (2012). On the fracture behaviour of thin-walled SFRC roof elements. Materials and Structures, 46(5), 803-829. https://doi.org/10.1617/s11527-012-9935-x
  24. EN 1992-1-1:2005. (2005). Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings. Brussels: European Committee for Standardization.
  25. Ercolino, M., Magliulo, G., & Manfredi, G. (2016). Failure of a precast RC building due to Emilia-Romagna earthquakes. Engineering Structures, 118, 262-273. https://doi.org/10.1016/j.engstruct.2016.03.054
  26. G+D Computing (2010) Using Strand7 (Straus7)-Introduction to the Strand7 finite element analysis system, 3rd edn. Sydney: Strand7 Pty Limited.
  27. Ghali, A., Favre, R., & Elbadry, M. (2011). Concrete structures: Stresses and deformations: Analysis and design for sustainability (4th ed.). London: CRC Press.
  28. Gribniak, V., Bacinskas, D., Kacianauskas, R., Kaklauskas, G., & Torres, L. (2013). Long-term deflections of reinforced concrete elements: Accuracy analysis of predictions by different methods. Mechanics of Time-Dependant Materials, 17, 297-313. https://doi.org/10.1007/s11043-012-9184-y
  29. Kim, S. J., Kim, J. H. J., Yi, S. T., Md Noor, N. B., & Kim, S. C. (2016). Structural performance evaluation of a precast PSC curved girder bridge constructed using multi-tasking formworks. International Journal of Concrete Structures and Materials, 10(Suppl 3), 1-17.
  30. Knight, D., Visintin, P., & Oehlers, D. J. (2015). Displacement-based simulation of time-dependent behaviour of RC beams with prestressed FRP or steel tendons. Structural Concrete, 3, 406-417.
  31. Lee, C., Lee, S., & Nguyen, N. (2016a). Modeling of compressive strength development of high-early-strength-concrete at different curing temperatures. International Journal of Concrete Structures and Materials, 10(2), 205-219. https://doi.org/10.1007/s40069-016-0147-6
  32. Lee, S., Nguyen, N., Le, T. S., & Lee, C. (2016b). Optimization of curing regimes for precast prestressed members with early-strength concrete. International Journal of Concrete Structures and Materials, 10(3), 257-269. https://doi.org/10.1007/s40069-016-0154-7
  33. Martin, L. D. (1977). A rational method for estimating camber and deflection of precast prestressed members. PCI Journal, 22(1), 100-108.
  34. Migliacci, A. & Mola, F. (1985). Progetto agli stati limite delle strutture in c.a. (Limit state design of r.c. structures). Vol. 2, Masson editor.
  35. Mola, F. (1997). Long term analysis of R.C. and P.C. structures according to Eurocode2. In Proceedings of the International ECSN (European Concrete Standard in Practice), Copenhagen.
  36. Mola, F. & Pellegrini, L. M. (2012). The new model for creep of concrete in fip model code 2010. In Proceedings of the 37th conference on Our World in Concrete & Structures, Singapore.
  37. Pisani, M. A. (2012). Creep analysis of compact cross-sections cast in consecutive stages-Part 1: General method. Engineering Structures, 43, 12-20. https://doi.org/10.1016/j.engstruct.2012.04.041
  38. Roller, J. J., Russell, H. G., Bruce, R. N., & Alaywan, W. R. (2011). Evaluation of prestress losses in high-strength concrete bulb-tee girders for the rigolets pass bridge. PCI Journal, 56(1), 110-134. https://doi.org/10.15554/pcij.01012011.110.134
  39. Roller, J. J., Russell, H. G., Bruce, R. N., & Hassett, B. (2003). Effects of curing temperatures on high strength concrete bridge girders. PCI Journal, 48(5), 72-79.
  40. Rosa, M. A., Stanton, J. F., & Eberhard, M. O. (2007). Improving predictions for camber in precast, prestressed concrete bridge girders. Washington State Transportation Center, University of Washington, Seattle WA, USA, Research Report, Agreement T2695. Task, 68, 1-342.
  41. Sargin, M. (1971). Stress-strain relationship for concrete and analysis of structural concrete sections. Canada: Study n. 4, Solid Mechanics Division, University of Waterloo.
  42. Singh, B. P., Yazdani, N., & Ramirez, G. (2013). Effect of a time dependent concrete modulus of elasticity on prestress losses in bridge girders. International Journal of Concrete Structures and Materials, 7(3), 183-191. https://doi.org/10.1007/s40069-013-0037-0
  43. Storm, T. K., Rizkalla, S. H., & Zia, P. Z. (2013). Effect of production practices on camber of prestressed concrete bridge girders. PCI Journal, 58(4), 96-111. https://doi.org/10.15554/pcij.01012013.96.111
  44. Tadros, M. K., Fawzy, F., & Hanna, K. E. (2011). Precast, prestressed girder camber variability. PCI Journal, 56(1), 135-154. https://doi.org/10.15554/pcij.01012011.135.154
  45. Toniolo, G. (2012). SAFECAST project: European research on seismic behaviour of the connections of precast structures. In Proceedings of the 15th World Conference of Earthquake Engineering (WCEE), Lisbon, paper No.1389.

Cited by

  1. Experimental and Numerical Assessment of Flexural and Shear Behavior of Precast Prestressed Deep Hollow-Core Slabs vol.14, pp.1, 2020, https://doi.org/10.1186/s40069-020-00407-y