DOI QR코드

DOI QR Code

Use of hybrid materials in the trace determination of As(V) from aqueous solutions: An electrochemical study

  • Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences Mizoram University) ;
  • Jamsheera, A. (Department of Chemistry, School of Physical Sciences Mizoram University) ;
  • Zirlianngura, Zirlianngura (Department of Chemistry, School of Physical Sciences Mizoram University) ;
  • Lee, Seung Mok (Department of Environmental Engineering, Catholic Kwandong University)
  • Received : 2016.03.15
  • Accepted : 2017.01.05
  • Published : 2017.06.30

Abstract

The carbon paste electrode (CPE) was modified with the pristine bentonite and hybrid material (HDTMA-modified bentonite). The modified-CPEs are then employed as working electrode in an electrochemical detection of As(V) from aqueous solutions using the cyclic voltammetric measurements. Cyclic voltammograms revealed that As(V) showed reversible behavior onto the working electrode. The hybrid material-modified carbon paste electrode showed significantly enhanced electrochemical signal which was then utilized in the low level detection of As(V). Moreover, the studies were conducted at neutral pH conditions. The electrochemical studies were conducted with scan rates (20 to 200 mV/s) to deduce the mechanism of redox processes involved at the electrode surface. The anodic current was linearly increased, increasing the concentration of As(V) from 5.0 to $35.0{\mu}g/g$ using the hybrid material-modified electrode. This provided fairly a good calibration line for As(V) detection. The presence of varied concentrations of As(III) in the determination of total arsenic was studied. The influence of several cations and anions viz., Cu(II), Mn(II), Zn(II), Pb(II), Cd(II), Fe(III), $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$, EDTA and glycine in the detection of As(V) from aqueous solution was also studied. Further, in an attempt to simulate the real matrix analysis, the tap water sample was spiked with As(V) and subjected for As(V) detection using the modified-CPE.

Keywords

References

  1. Yang T, Chen ML, Liu LH, Wang JH, Dasgupta PK. Iron(III) modification of bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environ. Sci. Technol. 2012;46:2251-2256. https://doi.org/10.1021/es204034z
  2. Chen M, Lin Y, Gu C, Wang J. Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry. Talanta 2003;104:53-57.
  3. Su CM, Androbert M. Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 2001;35:1487-1493. https://doi.org/10.1021/es001607i
  4. Mandal BK, Suzuki KT. Arsenic round the world: A review. Talanta 2002;58:201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
  5. IARC. International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans. Supplement 7; 1987.
  6. Dominguez-Gonzalez R, GonzalezVarela L, Bermejo-Barrera P. Functionalized gold nanoparticles for the detection of arsenic in water. Talanta 2014;118:262-269. https://doi.org/10.1016/j.talanta.2013.10.029
  7. Tiwari D, Lee SM. Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V). Chem. Eng. J. 2012;204-206:23-31. https://doi.org/10.1016/j.cej.2012.07.086
  8. Mohan D, Jr. Pittman CU. Arsenic removal from water/wastewater using adsorbents-A critical review. J. Hazard. Mater. 2007;142:1-53. https://doi.org/10.1016/j.jhazmat.2007.01.006
  9. Tiwari D, Laldawngliana C, Lee SM. Immobilized small sized manganese dioxide sand in the remediation of arsenic contaminated water. Environ. Eng. Res. 2014;19:107-113 https://doi.org/10.4491/eer.2014.19.1.107
  10. Cacho F, Lauko L, Manova A, Beinrohr E. On-line electrochemical pre-concentration of arsenic on a gold coated porous carbon electrode for graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2012;27:695-699. https://doi.org/10.1039/c2ja10332j
  11. Cornejo L, Lienqueo H, Arenas M, et al. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environ. Pollut. 2008;156:827-831. https://doi.org/10.1016/j.envpol.2008.05.022
  12. Lin MC, Liao CM. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan. Food Chem. Toxicol. 2008;46:701-709. https://doi.org/10.1016/j.fct.2007.09.098
  13. Lalhmunsiama, Tiwari D, Lee SM. Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water. Environ. Eng. Res. 2012;17(S1):S41-S48. https://doi.org/10.4491/eer.2012.17.1.041
  14. WHO. World Health Organization [Internet]. Available from: www.who.int/mediacentre/factsheets/fs210/en/.
  15. Gupta P, Goyal RN. Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta 2014;120:17-22. https://doi.org/10.1016/j.talanta.2013.11.075
  16. Tonle IK, Ngameni E, Tcheumi HL, Tchieda VH, Carteret C, Walcarius A. Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye. Talanta 2008;74:489-497. https://doi.org/10.1016/j.talanta.2007.06.006
  17. Manisankar P, Selvanathan TG, Vedhi C. Utilization of sodium montmorillonite clay-modified electrode for the determination of isoproturon and carbendazim in soil and water samples. Appl. Clay Sci. 2005;29:249-257. https://doi.org/10.1016/j.clay.2005.01.006
  18. Guo L, Zhang Q, Huang Y, Han Q, Wang Y, Fu Y. The application of thionine-graphene nanocomposite in chiral sensing for Tryptophan enantiomers. Bioelectrochemistry 2013;94:87-93. https://doi.org/10.1016/j.bioelechem.2013.09.002
  19. Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P. Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanalysis 2012;24:798-806. https://doi.org/10.1002/elan.201100555
  20. Simm AO, Ordeig O, del Campo J, Munoz FX. Compton RG. Diffusional protection of electrode surfaces using regular arrays of immobilised droplets: Overcoming interferences in electroanalysis. Analyst 2006;131:987-989. https://doi.org/10.1039/B607888E
  21. Dai X, Compton RG. Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III). Anal. Sci. 2006;22:567-570. https://doi.org/10.2116/analsci.22.567
  22. Profumo A, Merli D, Pesavento M. Voltammetric determination of inorganic As(III) and total inorganic As in natural waters. Anal. Chim. Acta 2005;539:245-250. https://doi.org/10.1016/j.aca.2005.02.062
  23. Feeney R, Kounaves SP. On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array. Anal. Chem. 2000;72:2222-2228. https://doi.org/10.1021/ac991185z
  24. Forsberg G, O'Laughlin JW, Megargle RG. Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry. Anal. Chem. 1975;47:1586-1592. https://doi.org/10.1021/ac60359a057
  25. Hua C, Jagner D, Renman L. Automated determination of total arsenic in sea water by flow constant-current stripping analysis with gold fibre electrodes. Anal. Chim. Acta 1987;201:263-268. https://doi.org/10.1016/S0003-2670(00)85343-X
  26. Hamilton TW, Ellis J. Determination of arsenic and antimony in electrolytic copper by anodic stripping voltammetry at a gold film electrode. Anal. Chim. Acta 1980;119:225-233. https://doi.org/10.1016/S0003-2670(01)93621-9
  27. Simm AO, Banks CE, Compton RG. Sonically assisted electroanalytical detection of ultratrace arsenic. Anal. Chem. 2004;76:5051-5055. https://doi.org/10.1021/ac049331a
  28. Simm AO, Banks CE, Compton RG. The electrochemical detection of arsenic(III) at a silver electrode. Electroanalysis 2005;17:1727-1733. https://doi.org/10.1002/elan.200503299
  29. Dai X, Nekrassova O, Hyde ME, Compton RG. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal. Chem. 2004;76:5924-5929. https://doi.org/10.1021/ac049232x
  30. Simm AO, Banks CE, Wilkins SJ, Karousos NG, Davis J, Compton RG. A comparison of different types of gold-carbon composite electrode for detection of arsenic(III). Anal. Bioanal. Chem. 2005;381:979-985. https://doi.org/10.1007/s00216-004-2960-z
  31. Greulach U, Henze G. Analysis of arsenic(V) by cathodic stripping voltammetry. Anal. Chim. Acta 1995;306:217-223. https://doi.org/10.1016/0003-2670(94)00681-B
  32. Hcnze G, Neeb R. Elektrochemische Analytik. Springer-Vcrlag: Berlin; 1986. p. 185.
  33. Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P. Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanalysis 2012;24:798-806. https://doi.org/10.1002/elan.201100555
  34. Svancara I, Yytras K, Bobrowski A, Kalcher K. Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta 2002;58:45-55. https://doi.org/10.1016/S0039-9140(02)00255-2
  35. Gibbon-Walsh K, Salaun P, van den Berg CMG. Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode. Anal. Chim. Acta 2012;710:50-57. https://doi.org/10.1016/j.aca.2011.10.041
  36. Bodewig FG, Valenta P, Nurnberg HW. Trace determination of As(III) and As(V) in natural waters by differential pulse anodic stripping voltammetry. Z. Anal. Chem. 1982;311:187-191. https://doi.org/10.1007/BF00476644
  37. Lee SM, Lalhmunsiama, Thanhmingliana, Tiwari D. Porous hybrid materials in the remediation of water contaminated with As(III) and As(V). Chem. Eng. J. 2015;270:496-507. https://doi.org/10.1016/j.cej.2015.02.053
  38. Zirlianngura, Jamsheera A, Tiwari D, Lee SM. Efficient use of novel hybrid materials in the ultra-trace determination of arsenic from aqueous solutions: An electrochemical study. Desal. Wat. Treat. 2016;57:18730-18738. https://doi.org/10.1080/19443994.2015.1093553
  39. Tanaka M, Takahashia Y, Yamaguchi N, Kim KW, Zheng G, Sakamitsu M. The difference of diffusion coefficients in water for arsenic compounds at various pH and its dominant factors implied by molecular simulations. Geochim. et Cosmochim. Acta 2013;105:360-371. https://doi.org/10.1016/j.gca.2012.12.004
  40. Salinas-torres D, Huerta F, Montilla F, Morallon E. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim. Acta 2011;56: 2464-2470. https://doi.org/10.1016/j.electacta.2010.11.023
  41. Afkhami A, Ghaedi H, Madrakian T, Nematollahi D, Mokhtari B. Electro-oxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nanotubes. Talanta 2014; 121:1-8. https://doi.org/10.1016/j.talanta.2013.12.047
  42. Ndlovu T, Mamba BB, Sampath S, Krause RW, Arotiba OA. Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode. Electrochim. Acta 2014;128:48-53. https://doi.org/10.1016/j.electacta.2013.08.084
  43. Cabelka TD, Austin DS, Johnson DC. Electrocatalytic oxidation of As(III). Voltammetric studies at Pt electrodes. J. Electrochem. Soc. 10984;131:1595-1602. https://doi.org/10.1149/1.2115916
  44. Teixeira MC, Tavares E de FL, Saczk AA, et al. Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode. Food Chem. 2014;154:38-43. https://doi.org/10.1016/j.foodchem.2013.12.076
  45. Greulach U, Henze G. Analysis of arsenic(V) by cathodic stripping voltammetry. Anal. Chim. Acta 1995;306:217-223. https://doi.org/10.1016/0003-2670(94)00681-B
  46. Xiao L, Wildgoose GG, Compton RG. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal. Chim. Acta 2008;620:44-49. https://doi.org/10.1016/j.aca.2008.05.015
  47. Svancara I, Yytras K, Bobrowski A, Kalcher K. Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta 2002;58:45-55. https://doi.org/10.1016/S0039-9140(02)00255-2
  48. Dai X, Compton RG. Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: Arsenic detection without interference from copper. Analyst 2006;131:516-521. https://doi.org/10.1039/b513686e
  49. Lee SM, Zirlianngura, Anjudikkal J, Tiwari D. Electrochemical sensor for trace determination of cadmium(II) from aqueous solutions: Use of hybrid materials precursors to natural clays. Int. J. Environ. Anal. Chem. 2016;96:490-504. https://doi.org/10.1080/03067319.2016.1172220

Cited by

  1. Adsorption characteristics of arsenic and phosphate onto iron impregnated biochar derived from anaerobic granular sludge vol.35, pp.7, 2018, https://doi.org/10.1007/s11814-018-0057-1
  2. Synthesis and characterization of Ag0(NPs)/TiO2 nanocomposite: insight studies of triclosan removal from aqueous solutions vol.41, pp.26, 2017, https://doi.org/10.1080/09593330.2019.1615127