Acknowledgement
Supported by : European Commission
References
- Abrahamson, N.A. (1992), "Non-stationary spectral matching", Seismol. Res. Lett., 63(1), 30.
- Arrigan, J., Pakrashi, V., Basu, B. And Nagarajaiah, S. (2011), Control of flapwise vibrations in wind turbine blades using semi‐active tuned mass dampers", Struct. Control Health Monit., 18(8), 840-851. https://doi.org/10.1002/stc.404
- Arrigan, J., Huang, C., Staino, A., Basu, B. and Nagarajaiah, S. (2014), "A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades", Smart Struct. Syst., 13(2), 177-201. https://doi.org/10.12989/sss.2014.13.2.177
- Asareh, M.A. and Prowell, I. (2011), "Seismic loading for FAST. Contract, 303(275), e3000", National Renewable Energy Laboratory, Golden, CO, USA.
- Basu, B. and Gupta, V.K. (1995), "A probabilistic assessment of seismic damage in ductile structures", Earthq. Eng. Struct. D., 24(10), 1333-1342. https://doi.org/10.1002/eqe.4290241004
- Basu, B., Nagarajaiah, S. and Chakraborty, A. (2008), "Online identification of linear time-varying stiffness of structural systems by wavelet analysis", Struct. Health Monit., 7(1), 21-36. https://doi.org/10.1177/1475921707081968
- Basu, B., Staino, A. and Basu, M. (2014), "Role of flexible alternating current transmission systems devices in mitigating grid fault‐induced vibration of wind turbines", Wind Energy, 17(7), 1017-1033. https://doi.org/10.1002/we.1616
- Basu, B., Zhang, Z. and Nielsen, S.R. (2016), „Damping of edgewise vibration in wind turbine blades by means of circular liquid dampers", Wind Energy, 19(2), 213-226. https://doi.org/10.1002/we.1827
- Cimellaro, G.P. and De Stefano, A. (2014), "Ambient vibration tests of XV century Renaissance Palace after 2012 Emilia earthquake in Northern Italy", Struct. Monit. Maint., 1(2), 231-247. https://doi.org/10.12989/SMM.2014.1.2.231
- Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31(2), 358-368. https://doi.org/10.1016/j.engstruct.2008.09.001
- Dai, K., Huang, Y., Gong, C., Huang, Z. and Ren, X. (2015), "Rapid seismic analysis methodology for in-service wind turbine towers", Earthq. Eng. Eng. Vib., 14(3), 539-548. https://doi.org/10.1007/s11803-015-0043-0
- Dinh, V.N. and Basu, B. (2015), "Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers", Struct. Control Health Monit., 22(1), 152-176. https://doi.org/10.1002/stc.1666
- Dinh, V.N., Basu, B. and Nagarajaiah, S. (2016), "Semi-active control of vibrations of spar type floating offshore wind turbines", Smart Struct. Syst., 18(4), 683-705. https://doi.org/10.12989/sss.2016.18.4.683
- Dueñas-Osorio, L. and Basu, B. (2008), "Unavailability of wind turbines due to wind-induced accelerations", Eng. Struct., 30(4), 885-893. https://doi.org/10.1016/j.engstruct.2007.05.015
- European Standard EN 1998-1:2004 (2004), "Design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings", Comite Europeen de Normalisation, Brussels, Belgium.
- Fitzgerald, B., Arrigan, J. and Basu, B. (2010), "Damage detection in wind turbine blades using time-frequency analysis of vibration signals", In Neural Networks (IJCNN), Proceedings of the 2010 International Joint Conference on (pp. 1-5). IEEE.
- Fitzgerald, B. and Basu, B. (2014), "Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades", J. Sound Vib., 333(23), 5980-6004. https://doi.org/10.1016/j.jsv.2014.05.031
- Fitzgerald, B. and Basu, B. (2016), "Structural control of wind turbines with soil structure interaction included", Eng. Struct., 111(2016), 131-151. https://doi.org/10.1016/j.engstruct.2015.12.019
- Fitzgerald, B., Basu, B. and Nielsen, S.R.K. (2013), "Active tuned mass dampers for control of in-plane vibrations of wind turbine blades", Struct. Control Health Monit., 20(12), 1377-1396. https://doi.org/10.1002/stc.1524
- Ganjavi, B. and Hao, H. (2013), "Optimum lateral load pattern for seismic design of elastic shear-buildings incorporating soil-structure interaction effects", Earthq. Eng. Struct. D., 42(6), 913-933. https://doi.org/10.1002/eqe.2252
- Germanischer LIoyd (2007), Rules and Guidelines, IV Industry Services, 4 Guideline for the Certification of Condition Monitoring Systems for Wind Turbines.
- Hajirasouliha, I., Asadi, P. and Pilakoutas, K. (2012), "An efficient performance-based seismic design method for reinforced concrete frames", Earthq. Eng. Struct. D., 41(4), 663-679. https://doi.org/10.1002/eqe.1150
- Hancock, J., Watson-Lamprey, J., Abrahamson, N.A., Bommer, J.J., Markatis, A., McCOY, E.M.M.A. and Mendis, R. (2006), "An improved method of matching response spectra of recorded earthquake ground motion using wavelets", J. Earthq. Eng., 10(1), 67-89..
- Hu, W.H., Thns, S., Rohrmann, R.G., Said, S. and Rcker, W. (2015), "Vibration-based structural health monitoring of a wind turbine system Part II: Environmental/operational effects on dynamic properties", Eng. Struct., 89, 273-290. https://doi.org/10.1016/j.engstruct.2014.12.035
- Jonkman, B.J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW reference wind turbine for offshore system development. Report No. NREL/TP- 50038060", National Renewable Energy Laboratory, Golden, CO, USA.
- Jonkman, J.M. and Buhl, M.L. Jr. (2005), "FAST users guide. Report No. NREL/EL-500-38230", National Renewable Energy Laboratory, Golden, CO, USA.
- Jonkman, J.M. (2009), "TurbSim user's guide: version 1.50. Report No. NREL/TP-500-46198", National Renewable Energy Laboratory, Golden, CO, USA.
- Katsanos, E.I., Thöns, S. And Georgakis, C.Τ. (2016), "Wind turbines and seismic hazard: a state‐of‐the‐art review", Wind Energy, 19(11), 2113-2133. https://doi.org/10.1002/we.1968
- Kim, D.H., Lee, S.G. and Lee, I.K. (2014), "Seismic fragility analysis of 5 MW offshore wind turbine", Renew. Energ., 65, 250-256, 2014. https://doi.org/10.1016/j.renene.2013.09.023
- Lackner, M.A. and Rotea, M.A. (2011), "Passive structural control of offshore wind turbines", Wind Energy, 14(3), 373-388. https://doi.org/10.1002/we.426
- Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11(4), 305-317. https://doi.org/10.1002/we.249
- Murtagh, P.J. and Basu, B. (2007), Identification of equivalent modal damping for a wind turbine at standstill using Fourier and wavelet analysis", Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 221(4), 577-589.
- Mori, F. and Spina, D. (2015), "Vulnerability assessment of strategic buildings based on ambient vibrations measurements", Struct. Monit. Maint., 2(2), 115-132, 2015. https://doi.org/10.12989/smm.2015.2.2.115
- Nagarajaiah, S. and Basu, B. (2009), "Output only modal identification and structural damage detection using time frequency & wavelet techniques", Earthq. Eng. Eng. Vib., 8(4), 583-605. https://doi.org/10.1007/s11803-009-9120-6
- Ng, C. and Ran, L. (Eds.). (2016), Offshore wind farms: technologies, design and operation. Woodhead Publishing.
- SeismoMatch (2016), "A computer program for adjusting earthquake records to match a specific target response spectrum.", Available: http://http://www.seismosoft.com/seismomatch
- Shahi, R., Nam, N., Gad, E., Wilson, J. and Watson, K. (2016), "Seismic performance behaviour of cold-formed steel wall panels by quasi-static tests and incremental dynamic analyses", J. Earthq. Eng., 1-28.
- Staino, A., Basu, B. and Nielsen, S.R.K. (2012), "Actuator control of edgewise vibrations in wind turbine blades", J. Sound Vib., 331(6), 1233-1256. https://doi.org/10.1016/j.jsv.2011.11.003
- Staino, A. and Basu, B. (2013), "Dynamics and control of vibrations in wind turbines with variable rotor speed", Eng. Struct., 56, 58-67. https://doi.org/10.1016/j.engstruct.2013.03.014
- Staino, A. and Basu, B. (2015), "Emerging trends in vibration control of wind turbines: a focus on a dual control strategy", Philos. T. R. Soc. A, 373(2035), 20140069. https://doi.org/10.1098/rsta.2014.0069
- Stewart, G.M. and Lackner, M.A. (2011), "The effect of actuator dynamics on active structural control of offshore wind turbines", Eng. Struct., 33(5), 1807-1816. https://doi.org/10.1016/j.engstruct.2011.02.020
- Tesfamariam, S., Stiemer, S.F., Dickof, C. and Bezabeh, M.A. (2014), "Seismic vulnerability assessment of hybrid steel-timber structure: Steel moment-resisting frames with CLT infill", J. Earthqu. Eng., 18(6), 929-944. https://doi.org/10.1080/13632469.2014.916240
- Zaher, A., McArthur, S.D.J., Infield, D.G. and Patel, Y. (2009), "Online wind turbine fault detection through automated SCADA data analysis", Wind Energy, 12 (6), 574-593. https://doi.org/10.1002/we.319
- Zhang, Z., Li, J., Nielsen, S.R. and Basu, B. (2014), „Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers", J. Sound Vib., 333(21), 5283-5298. https://doi.org/10.1016/j.jsv.2014.06.006
- Zhang, Z., Basu, B. and Nielsen, S.R. (2015), „Tuned liquid column dampers for mitigation of edgewise vibrations in rotating wind turbine blades", Struct. Control Health Monit., 22(3), 500-517. https://doi.org/10.1002/stc.1689
- Zhang, Z., Staino, A., Basu, B. and Nielsen, S.R. (2016), "Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing", Eng. Struct., 126, 417-431. https://doi.org/10.1016/j.engstruct.2016.07.008
Cited by
- Vibration control in wind turbines to achieve desired system‐level performance under single and multiple hazard loadings vol.25, pp.12, 2017, https://doi.org/10.1002/stc.2261
- Tripod-Supported Offshore Wind Turbines: Modal and Coupled Analysis and a Parametric Study Using X-SEA and FAST vol.7, pp.6, 2017, https://doi.org/10.3390/jmse7060181
- Vibration control of spar‐type floating offshore wind turbine towers using a tuned mass‐damper‐inerter vol.27, pp.1, 2020, https://doi.org/10.1002/stc.2471
- Study on the Influence of Baseline Control System on the Fragility of Large-Scale Wind Turbine considering Seismic-Aerodynamic Combination vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8471761