Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Barnes, M.R. (2009), "Form finding and analysis of tension structures by dynamic relaxation", Int. J. Space Struct., 14(2), 89-104. https://doi.org/10.1260/0266351991494722
- Chen, L., Song, J. and Zhang, Q. (2008), "Theory and engineering practice research on cable tension measurement with EM method", Constr. Technol., (in Chinese), 37(5), 144-153.
- Chen, R., Wan, C.F. and Xue, S.T. (2005), "The correction and effect of equation of the Timoshenko beam motion", J. Tongji university: natural science edition, 33(6), 711-715.
- Friedman, Z. and Kosmatka, J.B. (1993), "An improved two-node Timoshenko beam finite element", Comput. Struct., 47(3), 473-481. https://doi.org/10.1016/0045-7949(93)90243-7
- Greening, P.D. and Lieven, N.A.J. (2003), "Identification and updating of loading in frameworks using dynamic measurements", J. Sound Vib., 260(1), 101-115. https://doi.org/10.1016/S0022-460X(02)00902-1
- Irvine, H.M. and Irvine, H.M. (1992), Cable structures (Vol. 5), New York: Dover Publications.
- Irvine, M. (1978), "Free vibrations of inclined cables", J. Struct. Div. - ASCE, 104(2), 343-347.
- Jeanlouis, Guyader. (2006), "Vibrations in Continuous Media", Library of Congress Cataloging-in-Publication Data.
- Li, H.N., Li, D.S., Ren, L., Yi, T.H., Jia, Z.G. and Li, K.P. (2016), "Structural health monitoring of innovative civil engineering structures in Mainland China", Struct. Monit. Maint., 3(1), 1-32. https://doi.org/10.12989/SMM.2016.3.1.001
- Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
- Li, S., Reynders, E. Maes, K. and De Roeck, G. (2013), "Vibration-based estimation of axial force for a beam member with uncertain boundary conditions", J. Sound Vib., 332(4), 795-806. https://doi.org/10.1016/j.jsv.2012.10.019
- Maes, K., Peeters, J., Reynders, E., Lombaert, G. and De Roeck, G. (2013), "Identification of axial forces in beam members by local vibration measurements", J. Sound Vib., 332(21), 5417-5432. https://doi.org/10.1016/j.jsv.2013.05.017
- Maes, K., Reynders, E., De Roeck, G. and Lombaert, G. (2011), "Determination of axial forces by local vibration measurements", Master's Thesis, Department of Civil Engineering, KU Leuven.
- Mehrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng. -ASCE, 124(11), 1313-1322. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313)
- Minardo, A., Coscetta, A., Porcaro, G., Giannetta, D., Bernini, R. and Zeni, L. (2014), "Distributed optical fiber sensors for integrated monitoring of railway infrastructures", Struct. Monit. Maint., 1(2), 173-182. https://doi.org/10.12989/SMM.2014.1.2.173
- Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: a review", ASME J. Dynam. Syst., Meas. Control., 123 (4) 659-667.
- Reynders, E."System identification methods for (operational) modal analysis: review and comparison, Archives of Computational Methods in Engineering", 19(1) 51-124.
- Russell, J.C. and Lardner, T.J. (1998), "Experimental determination of frequencies and tension for elastic cables", J. Eng. Mech. -ASCE , 124(10), 1067-1072. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1067)
- Stephen, N.G. (2006), "The second spectrum of Timoshenko beam theory-Further assessment", J. Sound Vib., 292(1-2), 372-389. https://doi.org/10.1016/j.jsv.2005.08.003
- Su, X. (2006), "Application of MTS810 for Evaluating Mechanical Property of Ceramics", Modern Scientific Instruments.
- Tullini, N. and Laudiero, F. (2008). "Dynamic identification of beam axial loads using one flexural mode shape", J. Sound Vib., 318(1), 131-147. https://doi.org/10.1016/j.jsv.2008.03.061
- Wang, J. and Yang, Q.S. (2017), "Sensor selection approach for damage identification based on response sensitivity", Struct. Monit. Maint., 4(1), 53-68. https://doi.org/10.12989/SMM.2017.4.1.053
- Williams, F.W. and Wittrick, W.H. (1970), "An automatic computational procedure for calculating natural frequencies of skeletal structures", Int. J. Mech. Sci., 12(9), 781-791. https://doi.org/10.1016/0020-7403(70)90053-6
- Yamagiwa, I. Utsuno, H. Endo, K. and Sugii, K. (1999), "Application of simultaneous identification of tension and flexural rigidity at once to the bridge cables", Proceedings of the IABSE Conference, Cable-Stayed Bridges, Past, Present, and Future.
- Zui, H. Hamazaki, Y. and Namita, Y. (2002), "Study on tension and flexual rigidity identification for cables having large ratio of the diameter and the length", Doboku Gakkai Ronbunshu, 2002(703), 141-149.
Cited by
- Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.893
- Analysis of Seismic Action on the Tie Rod System in Historic Buildings Using Finite Element Model Updating vol.11, pp.10, 2017, https://doi.org/10.3390/buildings11100453