DOI QR코드

DOI QR Code

Strain sensing skin-like film using zinc oxide nanostructures grown on PDMS and reduced graphene oxide

  • Satish, Tejus (Department of Biochemistry, Rice University) ;
  • Balakrishnan, Kaushik (Department of Materials Science and Nanoengineering, Rice University) ;
  • Gullapalli, Hemtej (Department of Materials Science and Nanoengineering, Rice University) ;
  • Nagarajaiah, Satish (Department of Materials Science and Nanoengineering, Rice University) ;
  • Vajtai, Robert (Department of Materials Science and Nanoengineering, Rice University) ;
  • Ajayan, Pulickel M. (Department of Materials Science and Nanoengineering, Rice University)
  • Received : 2017.01.27
  • Accepted : 2017.05.03
  • Published : 2017.06.25

Abstract

In this paper, we present a strain-sensitive composite skin-like film made up of piezoresistive zinc oxide (ZnO) nanorods embedded in a flexible poly(dimethylsiloxane) substrate, with added reduced graphene oxide (rGO) to facilitate connections between the nanorod clusters and increase strain sensitivity. Preparation of the composite is described in detail. Cyclic strain sensing tests are conducted. Experiments indicate that the resulting ZnO-PDMS/rGO composite film is strain-sensitive and thus capable of sensing cycling strain accurately. As such, it has the potential to be molded on to a structure (civil, mechanical, aerospace, or biological) in order to provide a strain sensing skin.

Keywords

References

  1. Dharap, P., Li, Z., Nagarajaiah, S. and Barrera, E. (2004). "Nanotube film based on SWNT for macrostrain sensing", Nanotechnology J., 15(3), 379-382, DOI: 10.1088/0957-4484/15/3/026.
  2. Gullapalli, H., Vemuru, V.S.M., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S. and Ajayan, P.M. (2010). "Flexible piezoelectric ZnO-aper nanocomposite strain sensor", Small, 6(15), 1641-1646. https://doi.org/10.1002/smll.201000254
  3. Klingshirn, C.F., Bruno K.M., Andreas W., Axel H.and Johannes M.G. (2010). Zinc Oxide: From Fundamental Properties TowardsNovel Applications, Springer, New York City, NY, USA.
  4. Li, Z., Dharap, P., Nagarajaiah, S., Barrera, E. and Kim, J. D. (2004), "Carbon nanofilm sensor", Adv. Mater.J., 16(7), 640-643, DOI: 10.1002/adma.200306310.
  5. Loh, K.P., Bao, Q., Eda, G.andChhowalla, M. (2010). "Graphene oxide as a chemically tunable platform for optical applications", Nature Chemistry, 2(12), 1015-1024, doi: 10.1038/nchem.907.
  6. Nagarajaiah, S. and Erazo, K. (2016). "Structural monitoring and identification of civil infrastructure in the United States", Struct. Monit. Maint., 3(1), 51-69, DOI: 10.12989/smm.2016.3.1.051.
  7. Park, G., Rosing, T., Todd, M.D., Farrar, C.R.and Hodgkiss, W. (2008),."Energy harvesting for structural health monitoring sensor networks", ASCE J. Infrastruct. Syst., 14, 64-79. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64)
  8. Sun, P., Bachilo, S., Weisman, M. and Nagarajaiah, S. (2015). "Carbon nanotubes as non-contact optical strain sensors in smart skins", J. Strain Anal. Eng.Des., 50(7), 505-512, DOI: 10.1177/0309324715597414.
  9. Sun, P., Bachilo, S.M., Nagarajaiah, S. and Weisman, R.B. (2016). "Toward practical non-contact optical strain sensing using single-walled carbon nanotubes", ECS J. Solid State Sci. Technol., 5(8), M3012-M3017, DOI: 10.1149/2.0031608jss.
  10. Tang, Y., Zhao, Z., Hu, H., Liu, Y., Wang, X., Zhou, S.andQiu, J. (2015)."Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite", ACS Appl. Mater. Interfaces, 7, 27432-27439, doi: 10.1021/acsami.5b09314.
  11. Trung, T.Q., Tien, N.T., Kim, D., Jang, M., Yoon, O.J. and Lee, N.E. (2014). "A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing", Adv. Funct. Mater., 24, 117-124. https://doi.org/10.1002/adfm.201301845
  12. Withey, P.A., Vemuru, V.S.M., Bachilo, S.M. and Nagarajaiah, S. and Weisman, R.B. (2012). "Strain paint: noncontact strain measurement using single-walled carbon nanotube composite coatings", Nano Letters, ACS, 12(2), 3497-3500, DOI: 10.1021/nl301008m.