DOI QR코드

DOI QR Code

Characteristics of downslope winds in the Liguria Region

  • Burlando, Massimiliano (Department of Civil, Chemical, and Environmental Engineering, University of Genoa) ;
  • Tizzi, Marco (Department of Civil, Chemical, and Environmental Engineering, University of Genoa) ;
  • Solari, Giovanni (Department of Civil, Chemical, and Environmental Engineering, University of Genoa)
  • Received : 2017.03.22
  • Accepted : 2017.04.15
  • Published : 2017.06.25

Abstract

Strong downslope windstorms often occur in the Liguria Region. This part of North-Western Italy is characterised by an almost continuous mountain range along its West-East axis consisting of Maritime Alps and Apennines, which separate the Padan Plain to the North from the Mediterranean Sea to the South. Along this mountain range many valleys occur, frequently perpendicular to the mountain range axis, where strong gap flows sometimes develop from the top of the mountains ridge to the sea. In the framework of the European projects "Wind and Ports" and "Wind, Ports, and Sea", an anemometric monitoring network made up of 15 (ultra)sonic anemometric stations and 2 LiDARs has been realised in the three main commercial ports of Liguria. Thanks to this network two investigations are herein carried out. First, the wind climatology and the main statistical parameters of one Liguria valley have been studied through the analysis of the measurements taken along a period of 4 years by the anemometer placed at its southern exit. Then, the main characteristics of two strong gap flows that occurred in two distinct valley of Liguria are examined. Both these studies focus, on the one hand, on the climatological and meteorological characterisation of the downslope wind events and, on the other hand, on their most relevant quantities that can affect wind engineering problems.

Keywords

References

  1. Barry, R.G. (1992), Mountain Weather and Climate-2nd Ed., Routledge Publishing Company, London and New York.
  2. Bastin, S. and Drobinski, P. (2005), "Temperature and wind velocity oscillations along a gentle slope during sea-breeze events", Bound.-Lay. Meteorol., 114, 573-594. https://doi.org/10.1007/s10546-004-1237-6
  3. Belusic, D., Pasaric, M. and Orlic, M. (2004), "Quasi-periodic bora gusts related to the structure of the troposphere", Q. J. Roy. Meteorol. Soc., 130, 1103-1121. https://doi.org/10.1256/qj.03.53
  4. Belusic, D., Zagar, M. and Grisogono, B. (2007), "Numerical simulation of pulsations in the bora wind", Q. J. Roy. Meteorol. Soc., 133, 1371-1388. https://doi.org/10.1002/qj.129
  5. Bond, N.A., Dierking, C.F. and Doyle, J.D. (2006), "Research Aricraft and Wind Profiler Observations in Gastineau Channel during a Taku Wind Event", Weather Forecast., 21, 489-501. https://doi.org/10.1175/WAF932.1
  6. Bougeault, P., Blinder, P., Buzzi, A., Dirks, R., Houze, R.A., Kuettner, J., Smith, R.B., Steinacker, R. and Volkert, H. (2001), "The MAP special observing period", Bull. Am. Meteorol. Soc., 82, 433-462. https://doi.org/10.1175/1520-0477(2001)082<0433:TMSOP>2.3.CO;2
  7. Burlando, M., De Gaetano, P., Pizzo, M., Repetto, M.P., Solari, G. and Tizzi, M. (2013), "Wind climate analysis in complex terrains", J. Wind Eng. Ind. Aerod., 123, 349-362. https://doi.org/10.1016/j.jweia.2013.09.016
  8. Burlando, M., De Gaetano, P., Pizzo, M., Repetto, M.P., Solari, G., Tizzi, M. and Bonino, G. (2015), "The European project Wind, Ports, and Sea", Proceedings of the 14th International Conference on Wind Engineering, June 21-26, Porto Alegre, Brasil.
  9. Castino, F., Rusca, L. and Solari, G. (2003), "Wind climate micro-zoning: a pilot application to Liguria Region (North Western Italy)", J. Wind Eng. Ind. Aerod., 91, 1353-1375. https://doi.org/10.1016/j.jweia.2003.08.004
  10. Chen, X. and Huang, G. (2010), "Estimation of probabilistic extreme wind load effects: combination of aerodynamic and wind climate data", J. Eng. Mech.-ASCE, 136, 747-760. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000118
  11. Clark, T.L. and Peltier, W.R. (1977), "On the evolution and stability of finite-amplitude mountain waves", J. Atmos. Sci., 34, 1715-1730. https://doi.org/10.1175/1520-0469(1977)034<1715:OTEASO>2.0.CO;2
  12. CNR-DT 207/2008 (2010), Guide for the assessment of wind actions and effects on structures, National Research Council, Rome, Italy.
  13. Corby, G.A. (1954), "The airflow over mountains-A review of the state of current knowledge", Q. J. Roy. Meteorol. Soc., 80, 491-521. https://doi.org/10.1002/qj.49708034602
  14. De Gaetano, P., Repetto, M.P., Repetto, T. and Solari, G. (2014), "Separation and classification of extreme wind events from anemometric records", J. Wind Eng. Ind. Aerod., 126, 132-143. https://doi.org/10.1016/j.jweia.2014.01.006
  15. Defant, F. (1951), "Local winds", in Compendium of Meteorology, American Meteorological Society, Boston, Massachusetts, 655-672.
  16. Doran, J.C. and Horst, T.W. (1981), "Velocity and temperature oscillations in drainage winds", J. Appl. Meteorol., 20, 361-364. https://doi.org/10.1175/1520-0450(1981)020<0361:VATOID>2.0.CO;2
  17. Durran, D.R. (1990), "Mountain waves and downslope winds", in Atmospheric Processes Over Complex Terrain, W. Blumen (Ed.), Meteorological Monograph, 23(45), Am. Meteorol. Soc., Boston, Massachusetts, 59-81.
  18. Engineering Sciences Data Unit (1993), "Computer program for wind speeds and turbulence properties: flat or hill sites in terrain with roughness changes", ESDU Item 92032, London, U.K.
  19. EUMETSAT (2013) "MTG-FCI: ATBD for Cloud Mask and Cloud Analysis Product", Technical Report EUM/MTG/DOC/10/0542, Eumetsat.
  20. Eurocode 1 (2005) Actions on structures-General actions. Part 1-4: Wind actions, CEN, EN 1991-1-4:2005
  21. Fleagle, R.G. (1950), "A theory of air drainage", J. Meteor., 7, 227-232. https://doi.org/10.1175/1520-0469(1950)007<0227:ATOAD>2.0.CO;2
  22. Frehlich, R. and Kelley, N. (2008), "Measurements of wind and turbulence profiles with scanning doppler lidar for wind energy applications", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(1), 42-47. https://doi.org/10.1109/JSTARS.2008.2001758
  23. Gomes, L. and Vickery, B.J. (1977), "On the prediction of extreme wind speed from the parent distribution", J Wind Eng. Ind. Aerod., 2, 21-36. https://doi.org/10.1016/0167-6105(77)90003-4
  24. Gomes, L. and Vickery, B.J. (1977, 1978), "Extreme wind speeds in mixed climates", J. Ind. Aerod., 2, 331-344. https://doi.org/10.1016/0167-6105(78)90018-1
  25. Grubisic, V. and Lewis, J.M. (2004), "Sierra Wave Project Revisited: 50 Years Later", Bull. Am. Meteorol. Soc., 85, 1127-1142. https://doi.org/10.1175/BAMS-85-8-1127
  26. Gumbel, E.J. (1954), Statistical theory of extreme values and some practical applications, Applied Mathematics Series 33 (1st Ed.), U.S. Department of Commerce, National Bureau of Standards.
  27. Harris, R.I. and Cook, N.J. (2014), "The parent wind speed distribution: Why Weibull?", J. Wind Eng. Ind. Aerod., 131, 72-87. https://doi.org/10.1016/j.jweia.2014.05.005
  28. Hoaglin, D.C., Mostaller, F. and Tukey, J.W. (1983), Understanding robust and exploratory data analysis, Wiley, New York.
  29. IEA (2013), "Ground-based vertically-profiling remote sensing for wind resource assessment", Technical Report IEA Wind RP 15, International Energy Agency.
  30. Kareem, A. (1990), "Reliability analysis of wind-sensitive structures", J. Wind Eng. Ind. Aerod., 33, 495-514. https://doi.org/10.1016/0167-6105(90)90004-V
  31. Klemp, J.B. and Lilly, D.K. (1975), "The dynamics of wave-induced downslope winds", J. Atmos. Sci., 32, 320-339. https://doi.org/10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2
  32. Kozmar, H., Butler, K. and Kareem, A. (2015), "Downslope gusty wind loading of vehicles on bridges", J. Bridge Eng., 20(11), 04015008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000748
  33. Kruger, A.C., Goliger, A.M., Retief, J.V. and Sekele, S.S. (2012), "Clustering of extreme winds in the mixed climate of South Africa", Wind Struct., 15(2), 87-109. https://doi.org/10.12989/was.2012.15.2.087
  34. Kwon, S.D. (2009), "Uncertainty analysis of wind energy potential assessment", Appl. Energy, 87, 856-865.
  35. Lagomarsino, S., Piccardo, G. and Solari, G. (1992), "Statistical analysis of high return period wind speeds", J. Wind Eng. Ind. Aerod., 41, 485-496. https://doi.org/10.1016/0167-6105(92)90452-G
  36. Lee, T.J., Pielke, R.A., Kessler, R.C. and Weaver, J. (1989), "Influence of Cold Pools Downstream of Mountain Barriers on Downslope Winds and Flushing", Mon. Weather. Rev., 117, 2041-2058. https://doi.org/10.1175/1520-0493(1989)117<2041:IOCPDO>2.0.CO;2
  37. Lilly, D.K. (1978), "A severe downslope windstorm and aircraft turbulence event induced by a mountain wave", J. Atmos. Sci., 35, 59-77. https://doi.org/10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2
  38. Lilly, D.K. and Zipser, E.J. (1972), "The front range windstorm of 11 January 1972-a meteorological narrative", Weatherwise, 25, 56-63. https://doi.org/10.1080/00431672.1972.9931577
  39. Lombardo, F.T., Main, J.A. and Simiu, E. (2009), "Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis", J. Wind Eng. Ind. Aerod., 97, 120-131. https://doi.org/10.1016/j.jweia.2009.03.001
  40. Lu, H.C. and Fang, G.C. (2002), "Estimating the frequency distributions of PM10 and PM2.5 by the statistics of wind speed at Sha-Lu, Taiwan", Sci. Total Environ., 298, 119-130. https://doi.org/10.1016/S0048-9697(02)00164-X
  41. Meyers, M.P., Snook, J.S., Wesley, D.A. and Poulos, G.S. (2003), "A rocky mountain storm. Part II: The forest blowdown over the west slope of the northern colorado mountains-observations, analysis, and modeling", Weather Forecast., 18, 662-674. https://doi.org/10.1175/1520-0434(2003)018<0662:ARMSPI>2.0.CO;2
  42. Neiman, P.J., Hardesty, R.M., Shapiro, M.A. and Cupp, R.E. (1988), "Doppler lidar observations of a downslope windstorm", Mon. Weather Rev., 116, 2265-2275. https://doi.org/10.1175/1520-0493(1988)116<2265:DLOOAD>2.0.CO;2
  43. NWC SAF (2013) "Algorithm Theoretical Basis Document for Cloud Products", Technical Report SAF/NWC/CDOP2/MFL/SCI/ATBD/01, NWC SAF, Meteo France.
  44. Pagnini, L.C. and Solari, G. (1998), "Serviceability criteria for wind-induced acceleration and damping uncertainties", J. Wind Eng. Ind. Aerod., 74-76, 1067-1078. https://doi.org/10.1016/S0167-6105(98)00098-1
  45. Pagnini, L.C., Burlando, M. and Repetto, M.P. (2015), "Experimental power curve of small-size wind turbines in turbulent urban environment", Appl. Energy, 154, 112-121. https://doi.org/10.1016/j.apenergy.2015.04.117
  46. Peltier, W.R. and Clark, T.L. (1979), "On the evolution and stability of finite-amplitude mountain waves. Part II: surface wave drag and severe downslope windstorms", J. Atmos. Sci., 36, 1498-1529. https://doi.org/10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2
  47. Pena, A., Hasager, C.B., Gryning, S.E., Courtney, M., Antoniou, I., Mikkelsen, T. (2009), "Offshore wind profiling using light detection and ranging measurements", Wind Energy, 12, 105-124. https://doi.org/10.1002/we.283
  48. Poulos, G.S., Bossert, J.E., McKee, T.B. and Pielke, R.A. (2000), "The interaction of Katabatic flow and mountain waves. Part I: observations and idealized simulations", J. Atmos. Sci., 57, 1919-1936. https://doi.org/10.1175/1520-0469(2000)057<1919:TIOKFA>2.0.CO;2
  49. Princevac, M., Hunt, J.C.R. and Fernando, H.J.S. (2008), "Quasi-steady Katabatic winds on slopes in wide valleys: Hydraulic theory and observations", J. Atmos. Sci., 65,627-643. https://doi.org/10.1175/2007JAS2110.1
  50. Repetto, M.P. and Solari, G. (2010), "Wind-induced fatigue collapse of real slender structures", Eng. Struct., 32, 3888-3898. https://doi.org/10.1016/j.engstruct.2010.09.002
  51. Romanic, D., Ćuric, M., Lompar, M. and Jovicic, I. (2016a), "Contributing factors to Koshava wind characteristics", Int. J. Climatol., 36, 956-973. https://doi.org/10.1002/joc.4397
  52. Romanic, D., Ćuric, M., Zaric, M., Lompar, M. and Jovicic, I. (2016b), "Investigation of an extreme Koshava wind episode of 30 January-4 February 2014", Atmos. Sci. Lett., 17, 199-206. https://doi.org/10.1002/asl.643
  53. Sathe, A. and Mann, J. (2013), "A review of turbulence measurements using ground-based wind lidars", Atmos. Meas. Tech., 6, 3147-3167. https://doi.org/10.5194/amt-6-3147-2013
  54. Sathe, A., Mann, J., Gottschall, J. and Courtney, M.S. (2011), "Can wind lidars measure turbulence?", J. Atmos. Oceanic Technol., 28, 853-868. https://doi.org/10.1175/JTECH-D-10-05004.1
  55. Smith, D.A., Harris, M. and Coffey, A.S. (2006), "Wind Lidar evaluation at the Danish wind test site in Hovsore", Wind Energy, 9, 87-93. https://doi.org/10.1002/we.193
  56. Smith, R.B. (1979), "The influence of mountains on the atmosphere", Adv. Geophys., 21, 87-230.
  57. Smith, R.B. (1985), "On severe downslope winds", J. Atmos. Sci., 42(23), 2597-2603. https://doi.org/10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2
  58. Smith, R.B. (1987), "Aerial observations of the Yugoslavian Bora", J. Atmos. Sci., 44(2), 269-297. https://doi.org/10.1175/1520-0469(1987)044<0269:AOOTYB>2.0.CO;2
  59. Smith, R.B., Doyle, J.D., Jiang, Q. and Smith, S.A. (2007), "Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking", Q. J. Roy. Meteorol. Soc., 133, 917-936. https://doi.org/10.1002/qj.103
  60. Solari, G. (1993), "Gust buffeting. I: peak wind velocity and equivalent pressure", J. Struct. Eng.-ASCE, 119, 365-382. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(365)
  61. Solari, G. (1996a), "Wind speed statistic", in Modelling of Atmospheric Flow Fields, (Eds., Lalas D.P. and Ratto C.F.), World Scientific, Singapore.
  62. Solari, G. (1996b), "Statistical analysis of extreme wind speeds", in Modelling of atmospheric flow fields, (Eds., Lalas D.P. and Ratto C.F. ), World Scientific, Singapore.
  63. Solari, G. (2014), "Emerging issues and new frameworks for wind loading on structures in mixed climates", Wind Struct., 19(3), 295-320. https://doi.org/10.12989/was.2014.19.3.295
  64. Solari, G., Burlando, M., De Gaetano, P., Repetto, M.P. (2015), "Characteristics of thunderstorms relevant to the wind loading of structures", Wind Struct., 20(6), 763-791. https://doi.org/10.12989/was.2015.20.6.763
  65. Solari, G., Repetto, M.P., Burlando, M., De Gaetano, P., Pizzo, M., Tizzi, M. and Parodi, M. (2012), "The wind forecast for safety management of port areas", J. Wind Eng. Ind. Aerodyn., 104-106, 266-277. https://doi.org/10.1016/j.jweia.2012.03.029
  66. Sterling, M., Baker, C.J., Richards, P.J., Hoxey, R.P., Quinn, A.D. (2006), "An investigation of the wind statistics and extreme gust events at a rural site", Wind Struct., 9(3), 193-215. https://doi.org/10.12989/was.2006.9.3.193
  67. Takle, E.S., Brown, J.M. (1978), "Note on the use of Weibull statistics to characterize wind speed data", J. Appl. Meteorol., 17, 556-559. https://doi.org/10.1175/1520-0450(1978)017<0556:NOTUOW>2.0.CO;2
  68. Torrielli, A., Repetto, M.P. and Solari, G. (2013), "Extreme wind speeds from long-term synthetic records", J. Wind Eng. Ind. Aerod., 115, 22-38. https://doi.org/10.1016/j.jweia.2012.12.008
  69. Torrielli, A., Repetto, M.P. and Solari, G. (2014). "A refined analysis and simulation of the wind speed macro-meteorological components", J. Wind Eng. Ind. Aerod., 132, 54-65. https://doi.org/10.1016/j.jweia.2014.05.006
  70. Trigo, I.F., Bigg, G.R. and Davies, T.D. (2002), "Climatology of cyclogenesis mechanisms in the mediterranean", Mon. Weather. Rev., 130, 549-569. https://doi.org/10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2
  71. Wagner, R., Mikkelsen, T. and Courtney, M. (2009), "Investigation of turbulence measurements with a continuous wave, conically scanning Lidar", Technical Report Riso-R-1682(EN), Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde, Denmark.
  72. Weibull, W. (1951), "A statistical distribution function of wide applicability", J. Appl. Mech., 18, 293-297.
  73. Whiteman, C.D. (2000), Mountain Meteorology: Fundamentals and Applications, Oxford University Press, New York.
  74. Whiteman, C.D. and Zhong, S. (2008), "Downslope flows on a low-angle slope and their interactions with valley inversions. Part I: observations", J. Appl. Meteorol. Clim., 47, 2023-2038. https://doi.org/10.1175/2007JAMC1669.1
  75. Wilczak, J.M., Gossard, E.E., Neff, W.D. and Eberhard, W.L. (1996), "Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress", Bound.-Lay. Meteorol., 78, 321-349. https://doi.org/10.1007/BF00120940
  76. Xu, Q., Gao, S. and Fiedler, B.H. (1996), "A theoretical study of cold air damming with upstream cold air flow", J. Atmos. Sci., 53(2), 312-326. https://doi.org/10.1175/1520-0469(1996)053<0312:ATSOCA>2.0.CO;2
  77. Zangl, G. (2002), "Stratified flow over a mountain with a gap: Linear theory and numerical simulations", Q. J. Roy. Meteorol. Soc., 128, 927-949. https://doi.org/10.1256/0035900021643755