DOI QR코드

DOI QR Code

Numerical simulations of mountain winds in an alpine valley

  • 투고 : 2017.02.12
  • 심사 : 2017.04.27
  • 발행 : 2017.06.25

초록

The meteorological model WRF is used to investigate the wind circulation in Valle Camonica, Italy, an alpine valley that includes a large subalpine lake. The aim was to obtain the information necessary to evaluate the wind potential of this area and, from a methodological point of view, to suggest how numerical modeling can be used to locate the most interesting spots for wind exploitation. Two simulations are carried out in order to analyze typical scenarios occurring in the valley. In the first one, the diurnal cycle of thermally-induced winds generated by the heating-cooling of the mountain range encircling the valley is analyzed. The results show that the mountain slopes strongly affect the low-level winds during both daytime and nighttime, and that the correct setting of the lake temperature improves the quality of the meteorological fields provided by WRF significantly. The second simulation deals with an event of strong downslope winds caused by the passage of a cold front. Comparisons between simulated and measured wind speed, direction and air temperature are also shown.

키워드

참고문헌

  1. Cao, S., Zhang, E., Sun, L. and Cao, J. (2015) "Numerical study of wind profiles over simplified water waves", Wind Struct., 21(3), 289-309. https://doi.org/10.12989/was.2015.21.3.289
  2. Chen, F. and Dudhia, J. (2001), "Coupling an advances land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity", Mon. Weather Rev., 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  3. Cuxart, J. and Jimenez, M.A. (2007), "Mixing processes in a nocturnal low-level Jet: An LES study", J. Atmos. Sci., 64, 1666-1679. https://doi.org/10.1175/JAS3903.1
  4. Dudhia, J. (1989), "Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model", J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  5. Fernando, H.J.S., Lee, S.M., Anderson, J., Princevac, M., Pardyjak, E.R. and Grossman-Clarke, S. (2001), "Urban Fluid Mechanics: air circulation and contaminant dispersion in cities", Environ. Fluid Mech., 1, 107-164. https://doi.org/10.1023/A:1011504001479
  6. Giovannini, L., Laiti, L., Zardi, D. and de Franceschi, M. (2015), "Climatological characteristics of the Ora del Garda wind in the Alps", Int. J. Climatol., 35(14), 4103-4115. https://doi.org/10.1002/joc.4270
  7. Giovannini, L., Zardi, D., de Franceschi, M. and Chen, F. (2014), "Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley", Int. J. Climatol., 34, 1111-1131. https://doi.org/10.1002/joc.3750
  8. Hong, S.Y., Dudhia, J. and Chen, S.H. (2004), "A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation", Mon. Weather Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  9. Janjic, Z.I. (1994), "The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes", Mon. Weather Rev., 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  10. Kain, J.S. and Fritsch, J.M. (1993), "Convective parameterization for mesoscale models: the Kain-Fritsch scheme", The Representation of Cumulus Convection in Numerical Models, (Eds., Emanuel K.A., Raymond D.J.), American Meteorological Society, Boston, MA, USA.
  11. Ke, S., Yu, W., Wang, T., Zhao, L. and Ge, Y. (2016) "Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade", Wind Struct., 23(6), 559-575. https://doi.org/10.12989/was.2016.23.6.559
  12. Kleczek, M.A., Steeneveld, G.J. and Holtslag, A.A. (2014), "Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact of boundary-layer schemes, boundary conditions and spin-up", Bound.-Lay. Meteorol., 152(2), 213-243. https://doi.org/10.1007/s10546-014-9925-3
  13. Klemp, J.B. and Durran, D.R. (1987), "Numerical modelling of Bora winds", Meteorol. Atmos. Phys., 36(1-4), 215-227. https://doi.org/10.1007/BF01045150
  14. Lee, M., Lee, S.H., Hur, N. and Choi, C.K. (2010) "A numerical simulation of flow field in a wind farm on complex terrain", Wind Struct., 13(4), 375-383. https://doi.org/10.12989/was.2010.13.4.375
  15. Lepri, P., Kozmar, H., Vecenaj, Z. and Grisogono, B. (2014), "A summertime near-ground velocity profile of the Bora wind", Wind Struct., 19(5), 505-522. https://doi.org/10.12989/was.2014.19.5.505
  16. Leuzzi, G. and Monti, P. (1997), "Breeze analysis by mast and sodar measurements", Nuovo Cimento C, 20, 343-359.
  17. Liu, Y., Warner, T., Liu, Y., Vincent, C., Wu, W., Mahoney, B. and Boehnert, J. (2011), "Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications", J. Wind Eng. Ind. Aerod., 99(4), 308-319. https://doi.org/10.1016/j.jweia.2011.01.013
  18. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A. (1997), "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave", J. Geophys. Res., 102(14), 16663-16682. https://doi.org/10.1029/97JD00237
  19. Monti, P. and Leuzzi, G. (2005), "A numerical study of mesoscale airflow and dispersion over coastal complex terrain", Int. J. Environ. Pollution, 25(1-4), 239-250. https://doi.org/10.1504/IJEP.2005.007670
  20. Monti, P., Fernando, H.J.S. and Princevac, M. (2014), "Waves and turbulence in katabatic winds", Environ. Fluid. Mech., 14, 431-450. https://doi.org/10.1007/s10652-014-9348-1
  21. Pelliccioni, A., Monti, P. and Leuzzi, G. (2016), "Wind-speed profile and roughness sublayer depth modelling in urban boundary layers", Bound.-Lay. Meteorol., 160, 225-248. https://doi.org/10.1007/s10546-016-0141-1
  22. Petenko, I., Mastrantonio, G., Viola, A., Argentini, S., Coniglio, L., Monti, P. and Leuzzi, G. (2011), "Local circulation diurnal patterns and their relationship with large-scale flows in a coastal area of the Tyrrhenian Sea", Bound.-Lay. Meteorol., 139, 353-366. https://doi.org/10.1007/s10546-010-9577-x
  23. Pilotti, M., Valerio, G. and Leoni, B. (2013), "Data set for hydrodynamic lake model calibration: a deep pre-alpine case", Water Resour. Res., 49, 7159-7163. https://doi.org/10.1002/wrcr.20506
  24. Saha, S., et al. (2010), NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010, http://dx.doi.org/10.5065/D69K487J, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo. Accessed 01 Oct 2015.
  25. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G. (2008), "A description of the advanced research WRF version 3", Technical Note TN-475+STR, NCAR, USA.
  26. Stull, R.B. (1988), An Introduction to Boundary-Layer Meteorology, Kluwer Academic Publishers, Dordrecht, The Netherland.
  27. Valerio, G., Cantelli, A., Monti, P. and Leuzzi, G. (2017), "A modeling approach to identify the effective forcing exerted by wind on a prealpine lake AQ1 surrounded by a complex topography", Water Resour. Res., 53, doi:10.1002/2016WR020335.
  28. Valerio, G., Pilotti, M., Clelia, L.M. and Imberger, J. (2012), "The structure of basin-scale internal waves in a stratified lake in response to lake bathymetry and wind spatial and temporal distribution: Lake Iseo, Italy", Limnol. Oceanogr., 57(3), 772-786. https://doi.org/10.4319/lo.2012.57.3.0772
  29. Wang, T., Shuyang, C. and Yaojun, G. (2014) "Effects of inflow turbulence and slope on turbulent boundary layers over two-dimensional hills", Wind Struct., 19(2), 219-232. https://doi.org/10.12989/was.2014.19.2.219
  30. Weerasuriya, A.U., Hu, Z.Z, Li, S.W. and Tse, K.T. (2016) "Wind direction field under the influence of topography, part I: A descriptive model", Wind Struct., 22(3), 455-476. https://doi.org/10.12989/was.2016.22.4.455
  31. Whiteman, C.D. (2000), Mountain Meteorology: Fundamental and Applications, Oxford Univ. Press, New York, NY, USA.