DOI QR코드

DOI QR Code

Characterization of Gibberellic Acid-Stimulated Arabidopsis (GASA) gene to drought stress response in Poplar (Populus alba × P. glandulosa)

현사시나무 Gibberellic Acid-Stimulated Arabidopsis (GASA) 유전자의 발현 특성 및 건조 스트레스 내성 구명

  • Choi, Hyunmo (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Bae, Eun-Kyung (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Choi, Young-Im (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Yoon, Seo-Kyung (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Lee, Hyoshin (Forest Biotechnology Division, National Institute of Forest Science)
  • 최현모 (국립산림과학원 산림생명공학과) ;
  • 배은경 (국립산림과학원 산림생명공학과) ;
  • 최영임 (국립산림과학원 산림생명공학과) ;
  • 윤서경 (국립산림과학원 산림생명공학과) ;
  • 이효신 (국립산림과학원 산림생명공학과)
  • Received : 2017.02.21
  • Accepted : 2017.03.21
  • Published : 2017.03.31

Abstract

Gibberellic Acid-Stimulated Arabidopsis (GASA) genes are involved in plant hormone signaling, cell division and elongation, as well as in responses to stress conditions in plants. In this study, we isolated a GASA gene from hybrid poplar (Populus alba ${\times}$ P. glandulosa) and analyzed its physiological phenotype and molecular functions in poplar. PagGASA cDNA encodes a putative protein composed of 95 amino acids containing an N-terminal signal peptide and a conservative cysteine-rich C-terminal domain. Southern blot analysis revealed that one or two copies of the PagGASA are present in the poplar genome. The PagGASA transcripts were highly detected in flowers and roots. Moreover, the expression of PagGASA was induced by growth hormone (gibberellic acid) and stress hormones (abscisic acid, jasmonic acid, and salicylic acid). By using transgenic analysis, we showed that the upregulation of PagGASA in poplar provides high tolerance to drought stress. Therefore, our results suggest that PagGASA plays an important role in drought stress tolerance via stress-related plant hormone signaling in poplar.

GASA는 GA에 의해 조절되는 식물 유전자로서, 여러 식물에 보존되어 있고 다양한 조직에서 식물의 생장과 발달 및 스트레스 반응에 관여하는 것으로 알려져 있다. 본 연구에서는 GASA 유전자를 현사시나무(Populus alba ${\times}$ P. glandulosa)에서 분리하여 이를 PagGASA라 명명하고, 유전자의 구조와 발현특성을 조사하였다. PagGASA 유전자는 95개의 아미노산으로 구성된 단백질을 암호화하며, 아미노 말단에 시그널 펩티드 영역과 카르복시 말단에 12개 시스테인 잔기가 보존되어 있다. PagGASA는 현사시나무의 염색체에 1 ~ 2 copy 존재하며, 꽃과 뿌리에서 높게 발현하였다. 또한 PagGASA는 GA 뿐 아니라 ABA와 JA, SA와 같은 스트레스 관련 식물 호르몬의 처리에 의해서 발현이 증가하는 것으로 나타났다. 현사시나무에 형질전환하여 PagGASA를 과발현시킨 결과 건조 내성에 효과가 있음을 확인하였다. 따라서 PagGASA는 스트레스 관련 식물 호르몬 신호전달과 연결되어 건조 스트레스 방어기작에서 중요한 역할을 할 것으로 생각된다.

Keywords

References

  1. Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335-1344 https://doi.org/10.1104/pp.109.139352
  2. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63: 3523-3543 https://doi.org/10.1093/jxb/ers100
  3. Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M (1998) Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is upregulated by gibberellins in meristematic regions. Plant Mol Biol 36:871-883 https://doi.org/10.1023/A:1005938624418
  4. Ballen-Taborda C, Plata G, Ayling S, Rodriguez-Zapata F, Lopez-Lavalle LAB, Duitama J, Tohme J (2013) Identification of cassava microRNAs under abiotic stress. Int J Genomics 2013:articleID 857986
  5. Ben-Nissan G, Weiss D (1996) The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation. Plant Mol Biol 32:1067-1074 https://doi.org/10.1007/BF00041390
  6. Ben-Nissan G, Lee JY, Borohov A, Weiss D (2004) GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37:229-238 https://doi.org/10.1046/j.1365-313X.2003.01950.x
  7. Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellins and brassinosteroid. Plant Physiol 127:450-458 https://doi.org/10.1104/pp.010173
  8. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055-1064 https://doi.org/10.1242/dev.00992
  9. de la Fuente JI, Amaya I, Castillejo C, Sanchez-Sevilla JF, Quesada MA, Botella MA, Valpuesta V (2006) The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. J Exp Bot 57:2401-2411 https://doi.org/10.1093/jxb/erj213
  10. Furukawa T, Sakaguchi N, Shimada H (2006) Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst 81:171-180 https://doi.org/10.1266/ggs.81.171
  11. Golldack D, Luking I, Yang OS (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383-1391 https://doi.org/10.1007/s00299-011-1068-0
  12. Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellinregulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743-752 https://doi.org/10.1007/BF00020227
  13. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041-1052 https://doi.org/10.1111/j.1365-313X.2010.04124.x
  14. Kim YH, Kim MD, Choi YI, Park SC, Yun DJ, Noh EW, Lee HS, Kwak SS (2011) Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol J 9:334-347 https://doi.org/10.1111/j.1467-7652.2010.00551.x
  15. Ko CB, Woo YM, Lee DJ, Lee MC, Kim CS (2007) Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiol Biochem 45:722-728 https://doi.org/10.1016/j.plaphy.2007.07.010
  16. Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH, (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11:1093-1104 https://doi.org/10.1105/tpc.11.6.1093
  17. Lee HS, Lee JS, Noh EW, Bae EK, Choi YI, Han MS (2005) Generation and analysis of expressed sequence tags from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells. Plant Sci 169:1118-1124 https://doi.org/10.1016/j.plantsci.2005.07.013
  18. Lee HS, Bae EK, Park SY, Sjodin A, Lee JS, Noh EW, Jansson S (2007) Growth-phase-dependent gene expression profiling of poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells. Physiol Plantarum 131:599-613 https://doi.org/10.1111/j.1399-3054.2007.00987.x
  19. Li KL, Bai X, Li Y, Cai H, Ji W, Tang LL, Wen YD, Zhu YM (2011) GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. J Plant Physiol 168:2153-2160 https://doi.org/10.1016/j.jplph.2011.07.006
  20. Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61:3509-3517 https://doi.org/10.1093/jxb/erq185
  21. Nahirnak V, Almasia NI, Hopp HE, Vazquez-Rovere C (2012) Snakin/GASA proteins. Plant Signal Behav 7(8):1004-1008 https://doi.org/10.4161/psb.20813
  22. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Sci 5(170):25-31
  23. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45 https://doi.org/10.1093/nar/29.9.e45
  24. Qu J, Kang SG, Hah C, Jang J-C (2016) Molecular and cellular characterization of GA-Stimultaed Transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Sci 246:1-10 https://doi.org/10.1016/j.plantsci.2016.01.009
  25. Roxrud J, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471-483 https://doi.org/10.1093/pcp/pcm016
  26. Shi L, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot-specific, GA3-and ABA-regulated gene from tomato. Plant J 2:153-159
  27. Sun S, Wang H, Yu H, Zhong C, Zhang X, Peng J, Wang X (2013) GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp Bot 64:1637-1647 https://doi.org/10.1093/jxb/ert021
  28. Taylor BH, Scheuring CF (1994) A molecular marker for lateral root initiation: the RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordial. Mol Gen Genet 243:148-157
  29. Wang L, Wang Z, Xu Y, Joo SH, Kim SK, Xue Z, Xu Z, Wang Z, Chong K (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57:498-510 https://doi.org/10.1111/j.1365-313X.2008.03707.x
  30. Zhang S, Wang X (2008) Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chinese Sci Bull 53: 3839-3846
  31. Zhang S, Yang C, Peng J, Sun S, Wang X (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69:745-759 https://doi.org/10.1007/s11103-009-9452-7
  32. Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, Wang X (2015) AtGASA6 serves as an integrator of gibberellin-, abscisic acidand glucose-signaling during seed germination in Arabidopsis. Plant Physiol 169:2288-2303
  33. Zimmermann R, Sakai H, Hochholdinger F (2010) The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol 152:356-365 https://doi.org/10.1104/pp.109.149054