DOI QR코드

DOI QR Code

Numerical simulation of fish nets in currents using a Morison force model

  • Cifuentes, Cristian (Institute of Naval Architecture and Ocean Engineering Universidad Austral de Chile) ;
  • Kim, M.H. (Department of Ocean Engineering Texas A&M University)
  • Received : 2017.04.17
  • Accepted : 2017.05.11
  • Published : 2017.06.25

Abstract

For complex flexible structures such as nets, the determination of drag forces and its deformation is a challenging task. The accurate prediction of loads on cages is one of the key steps in designing fish farm facilities. The basic physics with a simple cage, can be addressed by the use of experimental studies. However, to design more complex cage system for various environmental conditions, a reliable numerical simulation tool is essential. In this work, the current load on a cage is calculated using a Morison-force model applied at instantaneous positions of equivalent-net modeling. Variations of solidity ratio ($S_n$) of the net and current speed are considered. An equivalent array of cylinders is built to represent the physical netting. Based on the systematic comparisons between the published experimental data for Raschel nets and the current numerical simulations, carried out using the commercial software OrcaFlex, a new formulation for $C_d$ values, used in the equivalent-net model, is presented. The similar approach can also be applied to other netting materials following the same procedure. In case of high solidity ratio and current speed, the hybrid model defines $C_d$ as a function of Re (Reynolds number) and $S_n$ to better represent the corresponding weak diffraction effects. Otherwise, the conventional $C_d$ values depending only on Re can be used with including shielding effects for downstream elements. This new methodology significantly improves the agreement between numerical and experimental data.

Keywords

References

  1. Aarnes, J.V. and Loland, G. (1990), "Current foces on cage, net deflection", Eng. Offshore Fish Farm., 137-152.
  2. Bi, C.W., Zhao, Y.P., Dong, G.H., Xu, T.J. and Gui, F.K. (2014), "Numerical simulation of the interaction between flow and flexible nets", J. Fluids Struct., 45, 180-201. https://doi.org/10.1016/j.jfluidstructs.2013.11.015
  3. Cifuentes, C. and Kim, M.H. (2015), "Dynamic analysis for the global performance of an SPM-feeder-cage system under waves and currents", China Ocean Eng., 29(3), 415-430. https://doi.org/10.1007/s13344-015-0029-8
  4. Cifuentes, C. and Kim, M.H. (2015), "Numerical simulation of wake effect in nets under steady current", Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering OMAE2015.
  5. Cifuentes, C., Kim, M.H., Sims, N.A. and Key, G. (2014), "Coupled analysis of a SPM Buoy- Feeder- Cage system for offshore aquaculture", Proceedings of the 24th International Ocean and Polar Engineering Conference.
  6. DeCew, J., Fredriksson, D.W., Lader, P. F., Chambers, M., Howell, W.H., Osienki, M., Celikkol, B., Frank, K. and Hoy, E. (2013), "Field measurements of cage deformation using acoustic sensors", Aquacult. Eng., 57, 114-125. https://doi.org/10.1016/j.aquaeng.2013.09.006
  7. DeCew, J., Tsukrov, I., Risso, A., Swift, M.R. and Celikkol, B. (2010), "Modeling of dynamic behavior of a single-point moored submersible fish cage under currents", Aquacult. Eng., 43(2), 38-45. https://doi.org/10.1016/j.aquaeng.2010.05.002
  8. Fredheim, A. (2005), "Current forces on net structures", Norwegian University of Science and Technology, PhD Thesis.
  9. Gansel, L.C., McClimans, T.A. and Myrhaug, D. (2012), "Average flow inside and around fish cages with and without fouling in a uniform flow", J. Offshore Mech. Arct., 134, 41201. https://doi.org/10.1115/1.4006150
  10. Gansel, L.C., Plew, D.R., Endresen, P.C., Olsen, A.I., Misimi, E., Guenther, J. and Jensen, O. "Drag of Clean and Fouled Net Panels - Measurements and Parameter
  11. Haritos, N. and He, D.T. (1992), "Modelling the response of cable elements in an ocean environment", Finite Elem. Anal. Des., 11, 19-32. https://doi.org/10.1016/0168-874X(92)90026-9
  12. Klebert, P., Lader, P., Gansel, L. and Oppedal, F. (2013), "Hydrodynamic interactions on net panel and aquaculture fish cages: A review", Ocean Eng., 58, 260-274. https://doi.org/10.1016/j.oceaneng.2012.11.006
  13. Kristiansen, D., Lader, P., Jensen, O . and Fredriksson, D. (2015), "Experimental study of an aquaculture net cage in waves and current", China Ocean Eng., 29(3), 325-340. https://doi.org/10.1007/s13344-015-0023-1
  14. Kristiansen, T. and Faltinsen, O.M. (2012), "Modelling of current loads on aquaculture net cages", J. Fluids Struct., 34, 218-235. https://doi.org/10.1016/j.jfluidstructs.2012.04.001
  15. Lader, P., Fredriksson, D.W., Guenther, J., Volent, Z., Blocher, N., Kristiansen, D., Gansel, L. and DeCew, J. (2015), "Drag on hydro-fouled nets -An experimental approach", China Ocean Eng., 29(3), 369-389. https://doi.org/10.1007/s13344-015-0026-y
  16. Lader, P., Jensen, A., Sveen, J.K., Fredheim, A., Enerhaug, B. and Fredriksson, D. (2007), "Experimental investigation of wave forces on net structures", Appl. Ocean Res., 29, 112-127. https://doi.org/10.1016/j.apor.2007.10.003
  17. Lader, P.F. and Enerhaug, B. (2005), "Experimental investigation of forces and geometry of a net cage in uniform flow", IEEE J. Ocean. Eng., 30(1), 79-84. https://doi.org/10.1109/JOE.2004.841390
  18. Loland, G. (1993), "Current forces on, and flow through and around, floating fish farms", Aquacult. Int., 1, 72-89. https://doi.org/10.1007/BF00692665
  19. Moe-Fore, H., Christian Endresen, P., Gunnar Aarsæ ther, K., Jensen, J., Fore, M., Kristiansen, D., Fredheim, A., Lader, P. and Reite, K.J. (2015), "Structural analysis of aquaculture nets: Comparison and validation of different numerical modeling approaches", J. Offshore Mech. Arct., 137(4), 41201. https://doi.org/10.1115/1.4030255
  20. Moe-fore, H., Endresen, P.C., Aarsæ ther, K.G., Jensen, J., Fore, M., Kristiansen, D., Fredheim, A., Lader, P. and Reite, K. (2014), "Structural analysis of aquaculture nets: comparison and validation of different numerical modelling approaches", Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014.
  21. Moe, H., Olsen, A., Hopperstad, O.S., Jensen, O . and Fredheim, A. (2007), "Tensile properties for netting materials used in aquaculture net cages", Aquacult. Eng., 37, 252-265. https://doi.org/10.1016/j.aquaeng.2007.08.001
  22. Morison, J.R., Johnson, J.W. and Schaaf, S.A. (1950), "The force exerted by surface waves on piles", J. Pet. Technol., 2, 149-154. https://doi.org/10.2118/950149-G
  23. Orcina (2014), OrcaFlex Manual Version 9.8a. Ulverston, Orcina.
  24. R. D. Blevins, "Forces on and Stability of a Cylinder in a Wake," J. Offshore Mech. Arct., 127, 39.
  25. Sumer, B.M. and Fredsoe, J. (1997), Hydrodynamics around cylindrical structures. Singapore: World Scientific Publishing Company.
  26. Swift, M.R., Fredriksson, D.W., Unrein, A., Fullerton, B., Patursson, O. and Baldwin, K. (2006), "Drag force acting on biofouled net panels", Aquacult. Eng., 35, 292-299. https://doi.org/10.1016/j.aquaeng.2006.03.002
  27. Tsukrov, I., Drach, A., DeCew, J., Robinson Swift, M. and Celikkol, B. (2011), "Characterization of geometry and normal drag coefficients of copper nets", Ocean Eng., 38(17-18), 1979-1988. https://doi.org/10.1016/j.oceaneng.2011.09.019
  28. Tsukrov, I., Eroshkin, O., Fredriksson, D., Swift, M.R. and Celikkol, B. (2003), "Finite element modeling of net panels using a consistent net element", Ocean Eng., 30, 251-270. https://doi.org/10.1016/S0029-8018(02)00021-5
  29. Turner, A.A. and Reid, G.K. (2015), "Experimental investigation of fish farm hydrodynamic properties on 1:15 scale model circular aquaculture cages", Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering OMAE2015.
  30. Zhao, Y.P., Wang, X., DeCew, J., Tsukrov, I., Bai, X.D. and Bi, C. (2015), "Comparative study of two approaches to model the offshore fish cages", China Ocean Eng., 29(3), 459-472. https://doi.org/10.1007/s13344-015-0032-0