References
- Azamathulla, H., Asce, M. and Ghani, A.A. (2011), "ANFIS-based approach for predicting thescour depth at culvert outlets", 2(February), 35-40.
- Balas, C.E., Koc, M.L. and Tur, R. (2010), "Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters", Appl. Ocean Res., 32(4), 425-433. https://doi.org/10.1016/j.apor.2010.09.005
- Castro, A., Pinto, F.T. and Iglesias, G. (2016), "Artificial intelligence applied to plane wave reflection at submerged breakwaters", 1686(December).
- Erdik, T. (2009), "Fuzzy logic approach to conventionalrubble mound structures design", Exp. Syst. Appl., 36(3), 4162-4170. https://doi.org/10.1016/j.eswa.2008.06.012
- Erdik, T., Savci, M.E. and Sen, Z. (2009), "Artificial neural networks for predicting maximum wave runup on rubble mound structures", Exp. Syst. Appl., 36(3), 6403-6408. https://doi.org/10.1016/j.eswa.2008.07.049
- Etemad-Shahidi, A. and Bonakdar, L. (2009), "Design of rubble-mound breakwaters using M5' machine learning method", Appl. Ocean Res., 31(3), 197-201. https://doi.org/10.1016/j.apor.2009.08.003
- Goyal, R., Singh, K. and Hegde, A.V. (2014), "Quarter circular breakwater : Prediction and artificial neural network", Mar. Technol. Soc. J., 48, 1-7.
- Goyal, R., Singh, K., Hegde, A.V. and Thakur, G.S. (2015). "Prediction of hydrodynamic characteristics of quarter circular breakwater using stepwise regression", Int. J.Ocean Clim. Syst., 6(1), 47-54. https://doi.org/10.1260/1759-3131.6.1.47
- Harish, N., Mandal, S., Rao, S.and Patil, S.G. (2015). "Particle swarm optimization based support vector machine for damage level prediction of non-reshaped berm breakwater", Appl. Soft Comput., 27, 313-321. https://doi.org/10.1016/j.asoc.2014.10.041
- Jabbari, E.and Talebi, O. (2011). "Using artificial neural networks for estimation of scour at the head of vertical wall breakwater", J. Coast. Res., 64, 521-526.
- Jain, P. and Deo, M.C. (2008), "Artificial neural networks for coastal and ocean studies", Proceedings of the12th Int. Conf. Int. Assoc. Comput. Methods Adv. Geomech.
- Janardhan, P., Harish, N., Rao, S. and Shirlal, K.G. (2015), "Performance of variable selection method for the damage level prediction of reshaped berm breakwater", Aquat. Procedia, 4, 302-307. https://doi.org/10.1016/j.aqpro.2015.02.041
- Kim, D.H., Kim, Y.J. and Hur, D.S. (2014), "Artificial neural network based breakwater damage estimation considering tidal level variation", Ocean Eng., 87, 185-190. https://doi.org/10.1016/j.oceaneng.2014.06.001
- Koc, M.L. and Balas,C.E. (2012), "Genetic algorithms based logic-driven fuzzy neural networks for stability assessment of rubble-mound breakwaters", Appl. Ocean Res., 37, 211-219. https://doi.org/10.1016/j.apor.2012.04.005
- Koc, M.L., Balas, C.E. and Koc, D.İI. (2016), "Stability assessment of rubble-mound breakwaters using genetic programming", Ocean Eng., 111, 8-12. https://doi.org/10.1016/j.oceaneng.2015.10.058
- Lee, A., Kim, S.E. and Suh, K.D. (2015), "Estimation of stability number of rock armor using artificial neural network combined with principal component analysis", Procedia Eng., 116(1), 149-154. https://doi.org/10.1016/j.proeng.2015.08.276
- Nikoo, M.R., Varjavand, I., Kerachian, R., Pirooz, M.D. and Karimi, A. (2014), "Multi-objective optimum design of double-layer perforated-wall breakwaters: Application of NSGA-II and bargaining models", Appl. Ocean Res., 47, 47-52. https://doi.org/10.1016/j.apor.2013.12.001
- N, S.R.and Deka, P.C. (2014), "Support vector machine applications in the field of hydrology : A review", Appl. Soft Comput. J., 19, 372-386. https://doi.org/10.1016/j.asoc.2014.02.002
- Patil, S.G., Mandal, S. and Hegde, A.V. (2012), "Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater", Adv. Eng. Softw., 45(1), 203-212. https://doi.org/10.1016/j.advengsoft.2011.09.026
- Patil, S.G., Mandal, S., Hegde, A.V. and Alavandar, S. (2011), "Neuro-fuzzy based approach for wave transmission prediction of horizontally interlaced multi-layer moored floating pipe breakwater", Ocean Eng., 38(1), 186-196. https://doi.org/10.1016/j.oceaneng.2010.10.009
- Raju, B., Hegde, A.V. and Chandrashekar, O. (2015), "Computational intelligence on hydrodynamic performance characteristics of emerged perforated quarter circle breakwater", Procedia Eng., 116(1), 118-124. https://doi.org/10.1016/j.proeng.2015.08.272
- Yagci, O., Mercan, D.E., Cigizoglu, H.K. and Kabdasli, M.S. (2005), "Artificial intelligence methods in breakwater damage ratio estimation", Ocean Eng., 32(17-18), 2088-2106. https://doi.org/10.1016/j.oceaneng.2005.03.004
- Zanuttigh, B., Mizar, S. and Briganti, R. (2013), "A neural network for the prediction of wave reflection form coastal and harbor structures", Coast. Eng., 80, 49-67. https://doi.org/10.1016/j.coastaleng.2013.05.004
Cited by
- A simplified algorithm for conceptual estimation of the material quantities of rubble-mound breakwaters vol.10, pp.1, 2020, https://doi.org/10.12989/ose.2020.10.1.111
- Estimation of the wind speed in Sivas province by using the artificial neural networks vol.32, pp.2, 2017, https://doi.org/10.12989/was.2021.32.2.161
- Assessment of global wave forces and moments on porous vertical barriers in random wave fields vol.11, pp.3, 2017, https://doi.org/10.12989/ose.2021.11.3.237