과제정보
연구 과제 주관 기관 : DGAPA-UNAM
참고문헌
- Antunes, P., Domingues, F., Granada, M. and Andre, P. (2012), Mechanical Properties of Optical Fibers, Selected Topics on Optical Fiber Technology, (Ed., Moh. Yasin), InTech. Available from: http://www.intechopen.com/books/selectedtopics-on-optical-fiber-technology/mechanical-properties-ofoptical-fibers (accessed 10.01.15)
- Basumallick, N., Chatterjee, I., Biswas, P., Dasgupta, K. and Bandyopadhyay, S. (2012), "Fiber Bragg grating accelerometer with enhanced sensitivity", Sensor. Actuat. A-Phys., 173(1), 108-115. https://doi.org/10.1016/j.sna.2011.10.026
- Berkoff, T.A. and Kersey, A.D. (1996). "Experimental demonstration of a fiber Bragg grating accelerometer", IEEE Photonics Technol. Lett., 8(12), 1677-1679. https://doi.org/10.1109/68.544716
- Bertholds, A. and Dandliker, R. (1988), "Determination of the individual strain-optic coefficients in single-mode optical fibres", J. Lightwave Technol., 6(1), 17-20. https://doi.org/10.1109/50.3956
- Ferraro, P. and De Natale, A. (2002), "On the posible use of optical fiber Bragg grating as strain sensors for geodynamical monitoring", Opt. Laser. Eng., 37, 115-130. https://doi.org/10.1016/S0143-8166(01)00141-5
- Gere, J.M. and Goodno, B.J. (2009), Mechanics of Materials, (7th Edition), Cengage Learning, Toronto, Ontario, Canada.
- Hibbeler, R.C. (2006), Mecanica de materiales, (6th Edition), Pearson Prentice Hall, Naucalpan de Juarez, Mexico.
- Julich, F., Aulbach, L., Wilfert, A., Kratzer, P., Kuttler, R. and Roths, J. (2013), "Gauge factors of fibre Bragg grating strain sensors in different types of optical fibres", Meas. Sci. Technol., 24(9), 1-7.
- Kashyap, R. (2009), Fiber Bragg Gratings, (2nd Edition), Academic Press, Burlington, MA, USA.
- Kersey, A.D., Davis, M.A., Patrick, H.J., LeBlanc, M., Koo, K.P., Askins, C.G., et al. (1997), "Fiber grating sensors", J. Lightwave Technol., 15(8), 1442-1463. https://doi.org/10.1109/50.618377
- Li, K. (2016), "Review of the strain modulation methods used in fiber bragg grating sensors", J. Sensors, 2016, 8 pages.
- Li, T., Shi, C., Tan, Y., Li, R., Zhou, Z. and Ren, H. (2017), "A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation", IEEE Sensors J., 17(4), 1021-1029. https://doi.org/10.3390/s17051021
- Li, T., Tan, Y., Han, X., Zheng, K. and Zhou, Z. (2017), "Diaphragm based fiber Bragg grating acceleration sensor with temperature compensation", Sensors, 17(1), 218. https://doi.org/10.3390/s17010218
- Mita, A. and Yokoi, I. (2000), "Fiber Bragg grating accelerometer for structural health monitoring", Proceedings of the 5th International Conference on Motion and Vibration Control 2000, Sydney, Australia, December.
- Todd, M.D., Johnson, G.A., Althouse, B.A. and Vohra, S.T. (1998), "Flexural beam-based fiber Bragg grating accelerometers", IEEE Photonics Technol. Lett., 10(11), 1605-1607. https://doi.org/10.1109/68.726764
- Wang, C., Lu, Q. and Cheng, L. (2013), "Novel type of temperature self-compensating acceleration transducer based on OFBG", IEEE Sensors J., 13(8), 3012-3013. https://doi.org/10.1109/JSEN.2013.2253604
- Weng, Y., Qiao, X., Feng, Z., et al. (2011), "Compact FBG diaphragm accelerometer based on L-Shaped rigid cantilever beam", Chinese Optics Lett., 10(9), (100604-1)-(100604-4).
- Wu, J., Masek, V. and Cada, M. (2009), "The possible use of fiber Bragg grating based accelerometers for seismic measurements", Proceedings of the IEEE CCECE 2009, St. John's, Canada, May.
- Xiang, L., Jiang, Q., Li, Y., and Song, R. (2016), "Design and experimental research on cantilever accelerometer based on fiber Bragg grating", Opt. Eng., 55(6), 066113. https://doi.org/10.1117/1.OE.55.6.066113
- Zhang, W., Wu, Z., Liu, Y., Yang, Y., Kai, G., Zhao, Q., et al. (2005). "Principles and realizations of FBG wavelength tuning with elastic beams", Optoelectronic Lett., 1(1), 5-9. https://doi.org/10.1007/BF03033603
피인용 문헌
- Fiber Bragg grating based acceleration sensors: a review vol.41, pp.1, 2017, https://doi.org/10.1108/sr-10-2020-0243
- Modifications on F2MC tubes as passive tunable vibration absorbers vol.28, pp.2, 2017, https://doi.org/10.12989/sss.2021.28.2.153